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Preface

As use of automated agent trading, online auctions and other forms of agent-
mediated electronic commerce is gaining prominence in everyday economic ac-
tivities, interest in further advancing these technologies is also continuing to
grow. The present volume presents a snapshot of research on Designing Trading
Agents and Mechanisms for Agent-Mediated Electronic Commerce. The book
has been built around a collection of articles initially presented at two highly
respected international workshops held in the summer of 2005:

– The 2005 workshop on Agent-Mediated Electronic Commerce VII: Designing
Mechanisms and Systems (AMEC VII, 2005) collocated with the AAMAS
2005 conference held in Utrecht, The Netherlands, in July 2005. AMEC 2005
was the seventh in a series of international workshops on research at the
intersection between computer science, operations research, artificial intelli-
gence, distributed systems, and economics, including game theory. Research
presented at this workshop has traditionally addressed a mix of both theoret-
ical and practical issues, looking at behavioral and organizational dimensions
of agent-mediated electronic commerce as well as at complex computational,
information and system-level challenges. An extended version of an article
originally presented at AMEC2004 has also been included.

– The 2005 workshop on Trading Agent Design and Analysis (TADA 2005),
collocated one week later with the International Joint Conference on Arti-
ficial Intelligence (IJCAI 2005) in Edinburgh, Scotland. The TADA work-
shop was the third of its kind and focused more specifically on trading agent
technologies and mechanism design. This includes discussions of agent archi-
tectures and decision-making algorithms along with theoretical analyses and
empirical evaluations of agent strategies in different trading contexts. The
workshop also serves as the primary discussion forum for the Trading Agent
Competition (TAC) research community. TAC is an annual tournament that
currently revolves around two different trading scenarios: a scenario that fo-
cuses on trading for flight reservations, hotel bookings and tickets at special
events (“TAC Travel”) and a scenario that models trading for consumer or-
ders and component procurement in a PC assembly supply chain (“TAC
Supply Chain Management” or “TAC-SCM”). Participants in the competi-
tion develop software agents that compete against one another through sev-
eral rounds. The rounds, enabled by game servers at SICS (www.sics.se/tac),
span several weeks and feature hundreds of games pitting different groups of
agents against one another. The competition, which over the years has at-
tracted the participation of several hundred researchers, has grown to become
a major catalyst for automated trading and agent-mediated e-commerce re-
search.



VI Preface

We hope that this book will be both a useful resource and a source of inspi-
ration for researchers, students, and practitioners in agent-mediated electronic
commerce and trading agents.

Han La Poutré
Norman Sadeh
Sverker Janson
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Learning Environmental Parameters for the Design of
Optimal English Auctions with Discrete Bid Levels

A. Rogers1, E. David1, J. Schiff2, S. Kraus3, and N.R. Jennings1

1 Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, UK
2 Department of Mathematics, Bar-Ilan University, Ramat-Gan 52900, Israel

3 Department of Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel
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Abstract. In this paper we consider the optimal design of English auctions with
discrete bid levels. Such auctions are widely used in online internet settings and
our aim is to automate their configuration in order that they generate the maxi-
mum revenue for the auctioneer. Specifically, we address the problem of estimat-
ing the values of the parameters necessary to perform this optimal auction design
by observing the bidding in previous auctions. To this end, we derive a general
expression that relates the expected revenue of the auction when discrete bid lev-
els are implemented, but the number of participating bidders is unknown. We
then use this result to show that the characteristics of these optimal bid levels are
highly dependent on the expected number of bidders and on their valuation distri-
bution. Finally, we derive and demonstrate an online algorithm based on Bayesian
machine learning, that allows these unknown parameters to be estimated through
observations of the closing price of previous auctions. We show experimentally
that this algorithm converges rapidly toward the true parameter values and, in
comparison with an auction using the more commonly implemented fixed bid
increment, results in an increase in auction revenue.

1 Introduction

The popularity of online internet auctions has increased dramatically over recent years,
with total online auction sales currently exceeding $30 billion annually. This popularity
has prompted much research into agent mediated auctions and specifically the develop-
ment of autonomous software agents that are capable of fulfilling the role of auctioneer
or bidder on behalf of their owner. Now, much of the theoretical work on these agent
mediated auctions has focused on direct sealed bid protocols, such as the second-price
(Vickrey) auction. These protocols are attractive as they are economically efficient and
provide simple dominant bidding strategies for participating agents. However, despite
these properties, such sealed bid protocols are rarely used in practice [14]. The vast ma-
jority of current online and real world auctions implement variants of a single auction
protocol, specifically, the oral ascending price (English) auction with discrete bid levels
[8]. Under this protocol, the auctioneer announces the price of the next bid and waits
until a bidder indicates their willingness to pay this amount. Upon receiving such an
indication, the price moves on to another higher discrete bid price, again proposed by
the auctioneer. The auction continues until there are no bidders willing to pay the bid
price requested by the auctioneer. At this point, the object is allocated to the current
highest bidder and that bidder pays the last accepted discrete bid price.

H. La Poutré, N. Sadeh, and S. Janson (Eds.): AMEC and TADA 2005, LNAI 3937, pp. 1–15, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 A. Rogers et al.

Now, despite its apparent popularity, an auctioneer implementing an English auc-
tion with discrete bid levels is faced with two complementary challenges. Firstly, it
must determine the actual discrete bid levels to be used. The standard academic auction
literature provides little guidance here since it commonly assumes a continuous bid
interval, where bidders incrementally outbid one another by an infinitesimally small
amount. However, discrete bid levels do have an effect, and have been investigated by
Rothkopf and Harstad [13]. They showed that the revenue of the auction is dependent
on the number and distribution of discrete bid levels implemented and, in general, the
use of discrete bid levels reduces the revenue generated by the auction. Conversely, the
discrete bid levels also act to greatly reduce the number of bids that must be submitted
in order for the price to reach the closing price. This has the effect of increasing the
speed of the auction and, hence, reduces the time and communication costs of both the
auctioneer and bidders. By analysing the manner in which the discrete bid auction could
close and then calculating the expected revenue of the auctioneer in a number of limited
cases (which we detail in section 2), they were able to derive the optimal distribution of
bid levels that would maximise this revenue. In previous work, we extended this result
to the general case, and we can now determine the optimal bid levels for an auction in
which the environmental parameters are given [4]. Specifically, these parameters are the
number of bidders participating in the auction and the bidders’ valuation distribution .

Thus, performing this optimal auction design introduces the second of the two chal-
lenges; that of determining, for the particular setting under consideration, the values of
these environmental parameters. While, in some settings these may be well known, in
most cases they will not. Thus, in this paper, we tackle the problem of determining the
optimal discrete bid levels when these values must be estimated through observations
of previous auctions. In so doing, we extend the state of the art in three ways:

1. We extend previous work by deriving an expression that describes the expected rev-
enue of a discrete bid auction when the number of bidders participating is unknown
but can be described by a probability distribution.

2. We use this expression to calculate the optimal bid levels that maximise the auc-
tioneers’ revenue in this case. We demonstrate that the optimal discrete bid levels
produced by this method are dependent on the distribution of the number of partic-
ipating bidders and on the distribution that describes the bidders’ valuations.

3. We show that this expression allows us to use machine learning, and specifically
Bayesian inference, in an online algorithm that generates sequentially better esti-
mates for the parameters that describe the two unknown distributions (i.e. the dis-
tribution of the number of bidders participating in any auction and the distribution
of the bidders’ valuation) by observing only the closing price of previous auctions.

The results that we provide may be used in the design of online auctions or may be
used by automated trading agents that are adopting the role of an auctioneer within
a multi-agent system. In such settings these auction protocols are attractive as they
provide a relatively simple bidding strategy for the agents, yet, unlike second price
sealed bid auctions, do not require the bidders to reveal their full private information to
the auctioneer. In this setting, there is a need to fully automate the design of such auction
mechanisms, and the work presented here represents a key step in this direction.
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The remainder of the paper is organised as follows: in section 2 we present related
work and in section 3 we describe our auction model and present the previously de-
rived results for the expected revenue of this auction (in order to make this paper self-
contained). In section 4 we extend this result to the case that the number of bidders
participating in the auction is described by a distribution and we use this new result
to derive optimal discrete bid levels in this case. In section 5 we present our Bayesian
inference algorithm and finally we conclude and discuss future work in section 6.

2 Related Work

The problem of optimal auction design has been studied extensively for the case of
auctions with continuous bid increments [12,10]. In contrast, auctions with discrete bid
levels have received much less attention, and much of the work that does exist is based
on the assumption that there is a fixed bid increment and thus the price of the auction
ascends in fixed size steps [15,3,16]. In contrast, Rothkopf and Harstad considered the
more general question of determining the optimal number and distribution of these bid
levels [13]. They provided a full discussion of how discrete bid levels affect the expected
revenue of the auction and they considered two different distributions for the bidders’
private valuations (uniform and exponential). In the case of the uniform distribution,
they considered two specific instances: (i) two bidders with any number of allowable bid
levels, and (ii) two allowable bid levels with any number of bidders. In the first instance,
evenly spaced bid levels (i.e. a fixed bid increment) was found to be the optimal. In the
second instance, the bid increment was shown to decrease as the auction progressed.
Conversely, for the exponential distribution (again with just two bidders), the optimal
bid increment was shown to increase as the auction progressed.

In previous work, we extended the analysis of Rothkopf and Harstad [13], and, rather
than analyse the ascending price English auction in limited cases, we presented a gen-
eral expression that relates the revenue to the actual bid levels implemented. For a uni-
form valuation distribution we were able to derive analytical results for the optimal bid
levels, and in general, we were able to numerically determine the optimal bid levels
for any bidders’ valuation distribution, any number of bid levels and any number of
bidders. In addition, we showed that in general, increasing the number of discrete bid
levels, causes the revenue to approach that of a continuous bid auction.

In this paper, we extend this previous work and address the problem of estimat-
ing the number and valuation distribution of the bidders through observing the closing
price of previous auctions. This problem is similar to that studied in the econometrics
literature, where it has been used to identify the behaviour of bidders in real world auc-
tions [6]. More recently, it has received attention within electronic commerce, with the
goal of determining the reserve price in a repeated procurement auction [2]. Typically,
this work uses statistical maximum likelihood estimators to determine the parameters
that describe the bidders’ valuation distribution through observations of their bidding
behaviour. In our case, this task is somewhat different as much of this information is
lost in the discretisation of the bids. Thus, we use the expression that we have already
derived for the revenue of the discrete bid auction, and use Bayesian inference to infer
parameter values through observations of the closing price of previous auctions. This
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Case 3

Case 2

Case 1

Two or more bidders have valuations between [li, li+1) and none have valuations x≥ li+1.

One bidder has a valuation x ≥ li+1, one or more bidders have valuations in the range
[li, li+1) and the bidder with the highest valuation was the current highest bidder at li.

One bidder has a valuation x≥ li, one or more bidders have valuations in the range [li−1, li),
and the bidder with the highest valuation was not the current highest bidder at li−1.

li−1 li li+1

Fig. 1. Diagram showing the three cases whereby the auction closes at the bid level li. In each
case, the circles indicate a bidder’s private valuation and the arrow indicates the bid level at which
that bidder was selected as the current highest bidder.

method is attractive, as rather than providing a single parameter estimate at each itera-
tion, it provides a full distribution that describes the auctioneer’s belief over the entire
range of possible parameter values. Thus indicating the confidence that the auctioneer
should have in his current estimate [9]. In addition, Bayesian inference tends to be com-
putationally simpler than maximum likelihood methods, since it does not require us to
maximise a function over several dimensions [1].

3 Auction Model and Expected Auction Revenue

In this work we consider a common model of an English auction that was used by
Rothkopf and Harstad [13]. In this model, n risk neutral bidders are attempting to buy a
single item from a risk neutral auctioneer. Bidders have independent private valuations,
xi, drawn from a common continuous probability density function, f (x), within the
range [x,x], and with a cumulative distribution function, F(x), where with no loss of
generality, F(x) = 0 and F(x)= 1. The bidders participate in an ascending price auction,
whereby the bids are restricted to discrete levels which are determined by the auctioneer.
We assume there are m + 1 discrete bid levels, starting at l0 and ending at lm (at this
point, we make no constraints on the actual number of these bid levels).

The auction starts with the auctioneer announcing the first discrete bid level (i.e. the
reserve price of the auction) and asks the bidders to indicate their willingness to pay this
amount. In traditional English auction houses, this indication is normally accomplished
by a nod to the auctioneer, while in current online auctions such as www.onsale.com it
requires a click of a mouse. If no bidders are willing to pay this amount within a prede-
termined and publically announced interval, the auction closes and the item remains un-
sold. However, if a bid is received, the auction proceeds and the auctioneer again requests
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bidders willing to pay the next discrete bid level. If no bidders are willing to pay this new
price, the auction then closes and the item is sold to the current highest bidder.

Now, in order to determine the optimal bid levels that the auctioneer should an-
nounce, an expression for the expected revenue of the auction must be found. Rothkopf
and Harstad considered this problem and identified three mutually exclusive cases that
described the different ways in which the auction could close at any particular bid level
[13]. These cases are shown in figure 1. They then calculated the probability of each
case occurring in a number of limited cases. In our earlier work we have been able to
use the same descriptive cases, but derive a general result for each probability [4]. Thus
we are able to describe the probability of the auction closing at any particular bid level:

Pn(li) =

⎧⎪⎪⎨⎪⎪⎩
[1−F(li)]

[
F(li+1)n−F(li)n

F(li+1)−F(li)

]
i = 0

[1−F(li)]
[

F(li+1)n−F(li)n

F(li+1)−F(li)
+ F(li−1)n−F(li)n

F(li)−F(li−1)

]
0 < i≤m

(1)

Note that the subscript in Pn indicates that the expression is in terms of the actual
number of bidders, n, who participate in the individual auction, and that we define
F(lm+1) = 1. Now, the expected revenue of the auctioneer is simply found by summing
over all possible bid levels and weighting each by the revenue that it generates:

En =
m

∑
i=0

liPn(li) (2)

Thus, by substituting equation 1 into this expression and performing some simplifica-
tion, we get the result:

En =
m

∑
i=0

F(li+1)n−F(li)n

F(li+1)−F(li)

[
li
[
1−F(li)

]− li+1
[
1−F(li+1)

]]
(3)

In our previous work we used this result to generate optimal bid levels when the number
of bidders and the bidders valuation distribution are known.

4 Optimising over Uncertainty in the Number of Bidders

Now, we wish to deal with the more general case that the number of bidders participat-
ing in the auction is not known by the auctioneer. To do so, we have to carefully define
what we mean by participation. Thus, a bidder is said to be participating in (or has en-
tered) the auction, if they have generated a valuation for the item being sold, are present
and are prepared to bid. It is this number of bidders (plus their valuation distribution
and the discrete bid levels implemented) that determines the expected revenue of the
auction (as described in equation 3). However, in the English auction considered here,
not all of the bidders who are participating will necessarily submit bids to the auctioneer
(i.e. many will find that the other bidders have raised the price beyond their own private
valuation and thus they have no opportunity to bid). Thus, the auctioneer is not able to
determine the number of bidders who are participating by simply observing the bids.

In addition, in any specific setting, the number of bidders participating in an auction
is unlikely to be fixed but will most likely be described by a probability distribution.
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Levin and Smith showed this by considering an auction model in which the number
of bidders participating was endogenously determined [7]. They modeled a pool of
potential bidders, and showed that, at equilibrium, each potential bidder has a fixed
probability of actually participating in (or entering) the auction. The number of bidders
participating in any auction was thus described by a binomial distribution. Bajari and
Hortacsu considered a similar model and compared their model to data collected from
eBay auctions selling collectable U.S. coins [1]. They note that in such online auctions,
the pool of potential bidders is extremely large. However, the fact that, in general, only
a small number of bids are observed, suggests that the probability that a potential bid-
ders participates in any individual auction is very low. Thus, they assume that, in such
cases, a Poisson distribution is an appropriate approximation for the binomial proposed
by Leven and Smith. In light of this work, we describe the number of bidders partici-
pating in any auction by a Poisson distribution and thus the probability that n bidders
participate is given by:

P(n) =
νne−ν

n!
(4)

Here the parameter ν describes the mean of this distribution and thus represents the
expected or average number of participants in any individual auction. Given this dis-
tribution, we can extend the results described in the previous section and express the
probability of the auction closing at any bid level, in terms of the parameter ν, rather
than n. To do so, we simply sum the probability given in equation 1 multiplied by the
probability of that number of bidders actually occurring:

Pν(li) =
∞

∑
n=0

P(n)Pn(li) (5)

Now substituting equations 1 and 4 into this expression and making use of the identity
∑∞

n=0 νn/n! = eν allows us to derive the result:

Pν(li) =

⎧⎪⎪⎨⎪⎪⎩
[1−F(li)]

[
ev[F(li+1)−1]−ev[F(li)−1]

F(li+1)−F(li)

]
i = 0

[1−F(li)]
[

ev[F(li+1)−1]−ev[F(li)−1]

F(li+1)−F(li)
+ ev[F(li−1)−1]−ev[F(li)−1]

F(li)−F(li−1)

]
0 < i≤ m

(6)

Now finally, as before, we are able to perform a weighted sum over all of the discrete
bid levels to determine the expected revenue of the auctioneer given the uncertainty in
the number of bidders that are participating in any specific auction:

Eν =
m

∑
i=0

eν[F(li+1)−1]−eν[F(li)−1]

F(li+1)−F(li)

[
li
[
1−F(li)

]− li+1
[
1−F(li+1)

]]
(7)

This is a key result. It expresses the expected revenue of the auction in terms of the
actual bid levels implemented, the bidders valuation distribution and, ν, the mean num-
ber of bidders who participate in each auction. We use this result in the next section to
derive optimal bid levels in spite of the inherent uncertainty in the number of bidders
who will participate in any individual auction.
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for i=0:m

li ←{ a+ i∗ (x−a)/m where a = max(x,x/2) // uniform

1/α+ i∗ (2/αm) // exponential

d ← ∞
while d > stopping condition,

l′0 ← argmax
l0

Eν (l0, . . . , lm) where x≥ l0 < l1

for i=1:m-1
l′i ← argmax

li
Eν (l0, . . . , lm) where li−1 < li < li+1

l′m ← argmax
lm

Eν (l0, . . . , lm) where lm−1 < lm ≤ x

d ← 0
for i=0:m,

d ←max(d,abs(l′i − li))
li ← l′i

Fig. 2. Pseudo-code algorithm for calculating solutions for the optimal bid levels

4.1 Optimal Discrete Bid Levels

The expression presented in the last section describes the expected revenue of the auc-
tion when discrete bid levels l0 . . . lm are used. Thus, in order to find the optimal bid
levels in this case, we must find the values l0 . . . lm that maximise this expression. In
general, it is not possible to perform this maximisation analytically, so we must use
a numerical algorithm. Now, given that there are many numerical multi-dimensional
optimisation algorithms available (see Numerical Recipes [11] for examples), two key
features of this problem guide our choice. Firstly, since each term in the summation in
equation 7 contains only pairs of bid levels (i.e. li and li+1), we note that maximising
this expression, and thus solving δEν/δli = 0, is equivalent to solving a tri-diagonal set
of m+ 1 simultaneous equations, that, by denoting δEν/δli as fi, we can write as:

f0(l0, l1) = 0

fi(li−1, li, li+1) = 0 for i = 1 to m−1 (8)

fm(lm−1, lm) = 0

Secondly, the solutions to these equations are constrained such that their ordering re-
mains constant i.e. li−1 < li < li+1. A general purpose optimisation package will fail to
exploit the first feature and will be heavily constrained by the second. However, we can
produce a simple and efficient numerical algorithm by using Jacobi iteration whereby
we iteratively solve the m + 1 simultaneous equations [5]. That is, we fix all other bid
levels, and we find the value of li that maximises equation 7 given that li−1 < li < li+1.
The expression is well behaved in this range and has a single maximum that can be
found using hill climbing or a gradient based method. We update all li and then iterate
the process until the bid levels converge to the necessary accuracy.

We present this algorithm in figure 2, noting that the expression Eν(l0, . . . , lm) rep-
resents the revenue expression in equation 7. Whilst we do not prove the convergence
properties of this iterative algorithm here, in our experiments it converged reliably given
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Fig. 3. Optimal bid levels for (a) uniform and (b) exponential valuation distributions

that two starting conditions for li were satisfied. Specifically, at the first iteration, no bid
level may be outside the upper limit of the bidders’ valuation distribution (i.e. li ≤ x)
and l0 must be greater or equal to the reserve price predicted for the equivalent continu-
ous bid auction (i.e. for a uniform bidders’ valuation distribution l0 ≥max(x,x/2)). We
provide suitable starting conditions for the two valuation distributions that we consider
in the next section in the algorithm.

4.2 Comparison of Valuation Distributions

The numerical solution described in the previous sections allows us to calculate the
optimal discrete bid levels for any value of ν (i.e. the mean number of bidders present
in any auction) and any bidders’ valuation distribution. In this section, we compare the
optimal bid levels over a range of values of ν when two different bidders’ valuation
distributions are used. Specifically, we compare the exponential distribution, proposed
by Rothkopf and Harstad, with the more common uniform distribution, and, to allow us
to compare these two directly, we chose their parameters so that the expected closing
price of the auctions are similar in both cases. Thus for the uniform distribution, we
consider a range of [0,4] meaning f (x) = 1

x−x and F(x) = x−x
x−x where x = 0 and x = 4.

For the exponential distribution, we have f (x) = αe−αx and F(x) = 1− e−αx where
α = 1. The resulting optimal discrete bid levels are shown in figure 3, for three different
mean numbers of bidders (ν = 2, 20 and 40) and over a continuous range from 2 to 100.
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In both cases, we use 10 bid levels (i.e. m = 10), as this makes clear the differences
between the two cases. Note that whilst changing the number of bid levels does affect
their value, it does not affect the general form of the distribution seen in the plot.

Now, Rothkopf and Harstad showed that in the case where there were two bidders,
the optimal discrete bid level distribution for the uniform distribution is a fixed bid
increment with evenly spaced bid levels. In addition, for an exponential distribution,
the optimal bid levels with two bidders is an increasing bid increment with bid levels
becoming more widely spaced as the auction progresses. Our results show that in the
general case, where there is uncertainty over the number of bidders that are partici-
pating, the distribution of the optimal discrete bid levels is complex. For the uniform
distribution there is a decreasing bid increment whereby the discrete bid levels become
closer together as the auction progresses. While, for the exponential distribution, the bid
increment initially decreases, reaches a minimum size and then subsequently increases.

We also see that as the number of bidders increases, the value of l0 increases.
Rothkopf and Harstad fixed the values of the first and last bid levels at the extremes
of the valuation distribution. However, we make no such restriction and thus the values
of l0 and lm are optimised at the same time as the other bid levels. Now, since l0 is
equivalent to the reserve price of the auction (i.e. the item will not sell if there are no
bidders willing to pay at least l0) the results indicate that, in contrast to the literature of
optimal auctions with continuous bid increments, the optimal reserve price of an auc-
tion with discrete bid levels is dependent on the mean number of bidders. In general,
we see that when the number of bid levels is large, or the mean number of bidders is
small, the value of l0 tends toward the continuous result (for the uniform distribution,
this is x∗ = max(x,x/2), and for the exponential distribution it is x∗ = 1/α [10]).

Intuitively we can understand these effects by the fact that given a fixed number of
bid levels, we should position them closer together in areas where they are most likely to
differentiate the bidders with the highest valuations. Thus, for the uniform distribution,
the bid levels become closer together nearer to the upper limit of the distribution. Whilst
in the exponential distribution, they become closer together where we expect to find the
bidder with the second highest valuation. This result suggests that it may be possible
to describe the optimal bid levels in terms of the distribution of the expected second
highest valuation. However, it has not proved possible to describe the revenue of the
discrete bid auction in these terms, so at the moment, this shortcut is not available to us.

5 Estimating Auction Parameters

In the previous sections, we showed that the optimal discrete bid levels, and hence the
revenue of the auctioneer, are dependent on the number of bidders that participate and
their valuation distribution. Now, when the values of the parameters that characterise
these distributions are not known, we must estimate their value through observations
of previous auctions. Since, in this paper we have derived an expression for the prob-
ability of the auction closing at any particular bid level (given these parameter values)
it is natural to use Bayesian inference to perform this task. That is, having observed an
auction closing at a certain bid level, we calculate our belief that a particular set of pa-
rameter values gave rise to this event. This method contrasts with statistical maximum
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likelihood techniques since rather than simply providing a single ‘most likely’ parame-
ter value, we derive a distribution that describes our belief over all possible values.

To illustrate this process, we describe a general setting, in which an auctioneer im-
plements a regularly repeating auction, and in each auction a single identical item is
sold. As described earlier, we assume that there is a large pool of potential bidders, who
have private independent valuations that are drawn from a common distribution. Each
potential bidder has a small probability of actively participating in any auction, and thus
each repeated auction faces a number of bidders that is described by the Poisson dis-
tribution shown in equation 4. Note that whilst their numbers are similar, these bidders
are different individuals with different valuations and, since we are explicitly interested
in the actions of the auctioneer, we assume that their bidding behaviour is unaffected by
their own observations of previous auctions1. Thus, our goal is to estimate the typical
number of bidders who participate in each auction, ν, and also the parameters that de-
scribe their common valuation distribution. These estimated parameter values can then
be used to calculate optimal discrete bid levels in subsequent auctions.

5.1 Estimating the Mean Number of Bidders

We first consider an example in which the bidders’ valuation distribution is known,
but, ν, the parameter that characterises the Poisson distribution and represents the mean
number of bidders participating in each repeated auction, is unknown. Thus, if at time
t the auctioneer implemented an auction that used the discrete bid levels lt = {lt

0 . . . lt
m}

and closed at bid level lt
w, we wish to find the value ν that best explains this outcome.

In other words, we wish to calculate the probability distribution P(ν|lt
w,F(x), lt ). Now,

in equation 6 we have already derived the probability of the auction closing at any bid
level, in terms of the mean number of bidders, the bidders’ valuation distribution and
the actual bid levels implemented. Thus, in the notation we are using here, we have
already derived P(lt

w|ν,F(x), lt ). With this expression, we can use Bayes’ theorem in
order to calculate the required result:

P
(
ν|lt

w,F(x), lt
)

=
P(lt

w|ν,F(x), lt)P(ν)
P(lt

w|F(x), lt)
(9)

Now, this described the case where the auctioneer has made an observation of a single
auction. In general, if t such auctions have been observed, the auctioneer can use all of
this evidence to improve its estimate. Thus if the bid levels used in these auctions were
L = {l1, . . . , lt}, and the observed closing prices were lw = {l1

w, . . . , lt
w}, we have:

P(ν|lw,F(x),L) =

t

∏
i=1

P
(

li
w|ν,F(x), li

)
P(ν)

Z
(10)

In this expression, Z is a normalising factor that ensures that P(ν|lw,F(x),L) sums to
one over the range of possible values of ν. Now, P(ν|lw,F(x),L) is a continuous prob-

1 This assumption is reasonable in circumstances where historical auction data is not available
to the bidders. However, we intend to investigate the full implications of this assumption in
future work.
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Fig. 4. Plots showing (a) the actual number of bidders that participated in the auction (unknown
to the auctioneer) and the actual bid levels and closing prices observed by the auctioneer and (b)
the prior and posterior belief distributions of the auctioneer after 2, 4 and 20 repeated auctions

ability distribution. However, for our purposes, we calculate it as a discrete probability
distribution over a suitable range. In this example, we calculate P(ν|lw,F(x),L) for
integer values of ν from ν to ν. Thus, this normalising factor is given by:

Z =
ν

∑
ν=ν

[
t

∏
i=1

P
(

li
w|ν,F(x), li

)
P(ν)

]
(11)

Finally, P(ν) represents the auctioneers’ prior belief; an initial assumption as to which
values of ν are most likely to occur, before any observations have been made. If no such
intuition is available (as in our simulations here), the prior can simply be initialised as
a uniform distribution, and it will have no effect on the estimates generated.

Thus the procedure adopted by the auctioneer is as follows: it first uses its prior belief
(i.e. an initial guess) to calculate the bid levels for the first auction. Having observed the
closing price of this auction, the expression in equation 10 is used to calculate the prob-
ability distribution that describes its updated belief in the parameter ν. This probability
distribution is then used to choose the value of ν for the calculation of the optimal bid
levels to be implemented in the next auction. There are two ways in which this choice
can be made, either: (i) the most likely value of ν can be used (i.e. the value of ν where
the probability distribution has a maximum), or (ii) a value of ν may be sampled from
this probability distribution. The first option is identical to a statistical maximum like-
lihood estimator. However the second option ensures more rapid convergence in cases
where the auctions that occur early in the learning process represent extreme events (i.e.
when many of the bidders have extremely high or low valuations or the auction happens
to have many more or many less bidders than is typical).

Simulation results for this procedure are shown in figure 4. Here, we consider the
same uniform valuation distribution as discussed in section 5 (i.e. x = 0 and x = 4).
The real value of ν in this case is 20, whilst the auctioneer’s prior belief is that it lies
somewhere between 0 and 100 (i.e. P(ν) is a uniform distribution over this range). In
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Fig. 5. Plots showing (a) the converging estimates generated by the learning algorithm, and (b)
how this results in improvements in the auctioneer’s revenue

figure 4a we show the actual number of bidders that participated (unknown to the auc-
tioneer) and the bid levels that were implemented in each repeated auction, along with
the actual bid level at which the auction closed (denoted by a filled circle on the appro-
priate bid level and observed by the auctioneer). In figure 4b, we show the probability
distribution, P(ν|lw,F(x),L), that describes the auctioneers’ belief in the values of ν
(shown after 2, 4 and 20 auctions). The variance in the observed auction closing prices
is driven by the stochastic nature of the number of bidders, their valuations and also
the changing auction bid levels. However, despite this variance, the auctioneers’ belief
in the most likely value of ν converges rapidly to the true value. Thus the bid levels
implemented by the auctioneer also converge to the those that generate the maximum
revenue.

To demonstrate the convergence of this algorithm, after each repeated auction we
calculate the error in the estimate that it produced (i.e. the difference between the es-
timated value and the true value). We repeat the process 1000 times using the same
parameter values (i.e. ν = 20 and a uniform bidders’ valuation distribution where x = 0
and x = 4) and average over the results. Figure 5a shows the mean absolute estimation
error plotted against the number of repeated auctions. The plot shows that the estimates
improve rapidly after the first few auctions and then converge to the true value.

Figure 5b shows the improvement in revenue that results from more accurately esti-
mating the mean number of bidders who are participating in the auctions, and then use
this result to optimise the discrete bid levels used in subsequent auctions. For the same
simulation runs presented in figure 5a, we show the efficiency of the auction, calculated
in terms of the percentage of the second highest bidder’s valuation that the auction
was able to extract. We compare this revenue to that which would have been achieved
with an auction that used the more commonly implemented fixed bid increment, with
and without setting a reserve price. Clearly, as the estimates of the auction parameters
improve, so the revenue of the auctioneer increases. Significantly, the greatest improve-
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Fig. 6. Plots showing (a) the actual number of bidders that participated in the auction (unknown
to the auctioneer) and the actual bid levels and closing prices observed by the auctioneer and (b)
the joint posterior belief distributions of the auctioneer after 20 repeated auctions

ment is realised after the first few auction and after this point, the revenue exceeds that
generated with fixed bid increments.

5.2 Estimating Multiple Parameters

The algorithm that we have presented here is certainly not restricted to learning sin-
gle parameters. In figure 6 we present a second example, this time for the exponential
valuation distribution presented in section 4.2. In this case we infer both the value of
parameter that describes the distribution of the number of bidders, ν, and the value of
the parameter that describes the bidders’ exponential valuation distribution, α. Thus we
must calculate the two-dimensional joint probability distribution P(ν,α|lw,F(x),L).
Again, despite the stochastic nature of the auction process, after twenty repeated auc-
tions the probability distribution shows a clear peak around the true values of ν = 20 and
α = 1, and thus the bid levels converge toward the true optimal bid levels. Space does
not allow us present a full analysis of the convergence, however, in general, increasing
the number of parameters that are learnt reduces the convergence rate.

We can extend this method to estimate more parameters, by simply calculating larger
joint probability distributions in more dimensions. However, in so doing, the cost of per-
forming this exact calculation increases geometrically. Fortunately Bayesian inference
is a well developed field with sophisticated methods that allow us to approximate these
distributions. For example, variational methods (which we intend to explore in the fu-
ture) allow us to approximate the full n-dimensional joint distribution as the product of
n independent distributions, with a corresponding computational saving [9].

6 Conclusions

In this paper we considered the optimal design of English auctions with discrete bid lev-
els and our aim was to automate their configuration to generate the maximum revenue
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for the auctioneer. To this end, we extended earlier work and derived an expression for
the revenue of the auction under uncertainty in the number of bidders who are participat-
ing in the auction. We used this result to numerically calculate optimal bid levels under
this uncertainty and showed that the value and distribution of these optimal bid levels
are highly dependent on both the mean number of bidders and the bidders’ valuation
distribution. Finally, we considered the case in which these environmental parameters
are unknown to the auctioneer, and used Bayesian inference to estimate these param-
eters through observations of the closing price of previous auctions. We showed that
despite the stochastic nature of the auctions, the estimates generated by this algorithm
rapidly converged to the true values. In addition, we showed that by correctly estimating
the true values of these parameters, the auctioneer is able to bid levels that result in an
increase in auction revenue.

Our future work in this area consists of extending the auction model to incorporate
an explicit expression of the auctioneer’s costs (rather than the explicit bound on the
maximum number of bid levels that we have presented here). In addition, we intend to
extend the inference method that we have presented here, and in particular, we would
like to use these techniques to perform model identification and selection. Thus, we
would infer the full parameters of several different valuation distributions (using vari-
ational methods to minimise the computational cost of this task) and then infer which
of these distributions best explains the closing prices that were observed (also consid-
ering the effect that an incorrect assumption will have). In so doing, we believe these
techniques will significantly contribute toward our goal of automating the mechanism
design of optimal discrete bid auctions.
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Abstract. There is an extensive body of literature concerning optimal
bidding strategies for agents participating in single shot auctions for
single, individually valued goods. However, it remains a largely open
question how a bidder should formulate his bidding strategy when there
is a sequence of auctions and, furthermore, there are complementarities
in the valuation for the bundle of items acquired in the separate auctions.
We investigate conditions for which adjusting the bidding horizon beyond
the immediate auction is profitable for a bidder. We show how such a
strategy, in the limit, reduces agents to zero marginal profits as predicted
by the Bertrand economic theory. We support our experimental results
by drawing a parallel to the nIPD.

1 Introduction

With the rapid growth of agent-mediated electronic commerce, it is becoming
increasingly evident that in a few years the Internet will host large numbers
of interacting software agents instead of human bidders and auctioneers. The
large-scale application of software agents is becoming inevitable due to the in-
creasing number, complexity, and interactions between available online auctions.
In line with this development, there is a growing body of literature on market-
based allocation of scarce resources in competitive Multi-Agent Systems (MASs)
[2,12,14], where the focus in the research is on sophisticated auction mechanisms
and bidding strategies grounded in auction theory [10].

The field of auction theory has intensively explored optimal bidding strategies
for single shot auctions, i.e. auctions for individual items. For example, it is well
known that the dominant strategy in the second price Vickrey auction [16] for
an agent is to bid its true valuation of a good. This property, however, does not
carry over in the case of future auctions when, for example, there are substitute
goods expected in future auctions. An agent then needs to deliberate the possi-
ble value of waiting for a future, possibly cheaper auction. The formulation of a
good bidding strategy is even more complex when a bundle of goods is desired,
as illustrated in [8] and [15] for the TAC classic1. As another example, consider

1 Visit http://www.sics.se/tac for details.

H. La Poutré, N. Sadeh, and S. Janson (Eds.): AMEC and TADA 2005, LNAI 3937, pp. 16–29, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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a software agent shopping for the cheapest possible computer assembled from
parts. An incomplete bundle has a large negative impact on utility. The litera-
ture investigates two main solutions; simultaneous auctions and combinatorial
auctions.

The first solution proposes for agents to participate in parallel auctions, one
for each desired item in the bundle [6]. This however is problematical as an agent
can have an exposure problem, i.e. how much of a sunk cost is incurred if one or
more items of the bundle are not won. This exposure problem is not evident for
combinatorial auctions, where the burden has shifted from estimating the value
of individual goods to bidding on and estimating the value of complete bundles
[14]. Both type of auctions however require availability (or at least knowledge)
of all goods for auction at the same time.

This last issue of availability can be infeasible in practice. For example, an
agent may have to procure a bundle of items where the items are auctioned
at different points in time. Consider also a logistics setting where orders for
transport are auctioned online. New opportunities for transport dynamically
occur in the course of operations as clients place new orders. It is then an issue as
to how well a new order can fit into an existing schedule, as this is a determining
cost factor. For example, an agent that is better able to expect future demand
has a better bundling of drop off points for cargo and is able to make a higher
profit due to a more efficient route.

A characteristic of the above examples is that agents have to incorporate in
their bidding strategy an expectation of emerging future items, expected compe-
tition, and an estimate of the complementary2 value of possible items in auctions
still to come. Goods with complementarities are items whose value as a bundle
is higher than the value of the items considered in isolation. The search for a
good bidding strategy for bundles with complementary issues in the items for
such a repeated auction setting is still largely an open question, but a growing
and essential area of research [5]. Much of this research has been restricted to a
limited number of agents, bundles, number of items in the bundles, known order
of the auctions, or to specific scenarios.

We extend the previous work by analyzing agents competing for a large num-
ber of unknown, individual items still to be auctioned to form profitable bundles.
More specifically, we study a set of agents based on a logistics domain. This do-
main is of interest due to its large-scale application, its competitive nature, and
its dynamic setting. These aspects make it a representative setting for evaluating
bidding strategies.

The capacitated agents compete for orders by bidding for available cargo as
these are offered in consecutive auctions. Each agent, in the face of competition,
has to learn to focus on types of bundles, depending on already won orders, in
order to maximize expected profit in auctions still to come. We show, using com-
putational experiments, that individual agents have an incentive to bid higher
(overbid) than the immediate valuation of a good if this increases probability of

2 This in the literature is also called super-additive or synergy[11], i.e. u({A, B}) >
u({A}) + u({B}).
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winning profitable goods with complementarities in future auctions. We present
initial results using a straightforward machine learning technique that is able
to learn intuitive bidding strategies that can be interpreted from an economic
perspective for this difficult problem. In a strongly competitive scenario with
intelligent bidders, the profits of the agents are reduced to near marginal costs.
This is in line with economic theory, but our experimental results are a validation
for a large-scale, adaptive MAS.

We present a more in-depth analysis from a game theoretical perspective. We
link results of our experiments to outcomes of n ≥ 2 player iterated prison-
ers’ dilemma (nIPD). Analytical results are first presented for two players. The
dominant strategy of the individual agents is to overbid for items in auctions
in order to achieve higher profits in future auctions at the expense of the other
agent. We show that the profits of both agents are however lower if both agents
follow this strategy. This is in line with the two player prisoners’ dilemma game
where higher returns are received if both agents cooperate (do not overbid),
but the dominant strategy is for both agents to defect (overbid). We generalize
these results for n > 2 players and show that defection, i.e. strategic overbid-
ding, is the dominant strategy for all agents. Our analysis indicates that the
computational results of the experiments are indicative for the properties of
the domain with complementarities. More sophisticated learning algorithms for
the agents will arrive at similar results in equilibrium. However, we argue, and
support through experimental results, that agents can have a first-mover advan-
tage when choosing a more fine-tuned defect strategy, especially under changing
circumstances.

The rest of the document is structured as follows: Section 2 formally defines
the agents and the auctions. Section 3 discusses how an agent can exploit expec-
tation of future auctions using machine learning techniques. Section 4 presents
experimental results where strategically bidding agents compete with opponents
for various representative settings. Section 5 presents the game theoretical link
to the nIPD. Section 6 discusses how bidders, given our results, can still benefit
from adaptive bidding strategies. Section 7 discusses and concludes.

2 The Model: Agents and Auctions

In this section we present the model of the agents and auctions. We use a rel-
atively simple model with a limited problem domain. The model is however of
sufficient complexity to allow for profitable opportunistic bidding by agents, es-
pecially if faced by opposing agents that do not consider the worth of future
auctions. We present the agents and auctions from a logistics perspective to fa-
cilitate some of the intuitions in the choice of the model. We discuss the agents
as representing trucks that transport the won loads.

Each agenti from the set Agents, where | Agents |≥ 2, has an integer
capacity > 0 constraint. Each auctioned load l has a dimension of 1. The number
of the loads won by agent agentj cannot exceed its capacity. Agents are limited
in their capacity and must target the loads that maximize utility. Finally, the
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agents are homogeneous, except in their bidding strategies, to facilitate analysis
of the results.

The Auctions = {auction1, auction2, . . . , auctiont} are held sequentially. In
each auctioni one separate load l is sold. We let each auctioni be a Vickrey second
price auction. This choice is motivated by three reasons. First of all, Vickrey
auctions have limited overhead in communication and are straightforward to
handle by the auctioneer. Second, for the last known auction auctiont, or for an
auction that if won fills the agent to capacity, the agents, as derived from auction
theory under some mild conditions, have as dominant strategy to bid their true
valuation. Thirdly, use of Vickrey auctions gives a basis for a simple bidding
strategy to formulate baseline agents to compete against in the computational
experiments. These baseline agents, which we call myopic bidders, in each auction
simply bid their true valuation for the item for auction (if not full) as if there
were no future auctions to be taken into consideration.

We note that the results of Section 4 and the analysis of Section 5 are not
dependent on the specific choice of auction. We feel a first price, sealed bid
auction will result in comparable equilibrium outcomes. However, the additional
strategic deliberations available in an open cry auction, i.e. each agent knows
the going price (and the winner), can allow an agent to more quickly adapt and
arrive at our predicted equilibrium outcomes.

The loads for auction originate in fruitful regions [9] where FruitfulRegions =
{F1, F2, . . . , Fn}. Each fruitful region represents a cluster of customers that re-
quire transport of loads to a central depot D. The fruitful regions are differ-
entiated in the number of loads they offer in one sequence of auctions and are
abstract representations of populations.
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Fig. 1. Fruitful regions (a) and state representations (b)

In Figure 1a, there are three fruitful regions F1,F2, and F3 from which loads
originate that have to be delivered to the depot D. An agent can, for example,
pick up 2 loads in region F2 and continue to region F3 and pick up one more
before returning to the depot D.

An agentj ∈ Agents has a private valuation function for an auctioned load l.
In Figure 1a, the valuation is influenced by the already won loads L in previous
auctions, as movement cost is a major factor in calculating the marginal utility of
accepting a new load l for transport. For example, the agent above for Figure 1a
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can cheaply pick up another load at fruitful region F2 or F3, as this fits in its
current planned route, but it will have to make a costly detour to pick up a load
l originating in region F1.

In our experiments, we consider agents making one round trip starting from
the depot D and visiting each fruitful region Fi only if at least one load has been
won in an auction. The agents only pick up their cargo after all the auctions are
finished. Without taking into account movement costs, the valuation is equal to
1 for every load from each and every region for each and every agent. In this
initial setting, there are as yet no complementarity issues.

However, we impose a movement cost of 0.25 from the depot D to any fruitful
region and a movement cost of 0.5 between any two fruitful regions. The straight-
forward valuation for a new load l1 of fruitful region Fi is hence 0.5 if an agent
a has not yet won any loads for that fruitful region. A second load l2 won from
Fi will then yield a straightforward valuation of 1 as no extra movement costs
are required to incorporate the pickup of l2. There is hence a complementary
valuation between l1 and l2 which can give an incentive for a to bid more than
0.5 for l1 to increase the changes of winning l2, and further loads from this same
fruitful region. Let agent a have won loads L = {L1, L2, . . . , Ln} where Li are
the loads won in fruitful region Fi. We define the immediate valuation of agent
a for a new load l from fruitful region Fk as 0.5 if | Lk |= 0 and as 1 otherwise.

The state of the agent agenti during the auctions is, in part, characterized by
the number of auctions won for each fruitful region, limited by the capacity of
the agent. In Figure 1b we show the possible states for an agent with capacity
2 bidding in auctions for loads originating in one of n = 2 fruitfulregions. The
agent starts with 0 loads acquired ((0, 0)) and moves to consecutive states as
it wins loads in auctions. The immediate valuation is given for the transitions
between states. For a state s and a load l from fruitful region Fi, we call the
new state s′ a successor of s for l. For example, in Figure 1b, state (0, 1) is a
successor of state (0, 0) for a load l from fruitful region F2. In a logistics domain,
fruitful regions are useful, realistic abstractions that allow us to reduce a large,
fine-grained world to a few abstract points of interest. This allows us to define
a compact state space as a function of the number of loads acquired per fruitful
region.

In each of the sequential auctions Auctions = {auction1 , . . . , auctiont}, one
load from one of the fruitful regions is sold. Hence the number of auctions
t = Σi Fi. For each auction, one random load from any of the remaining loads is
chosen. The agents know the number of auctions, they know the initial number
of loads available a priori for each fruitful region, but they do not know the
bidding strategies of their opponents and the specific order in which the loads
will be auctioned. The agents participate in many repeated epochs of such se-
quential auctions. After each epoch, the order in which the loads are auctioned
are randomized anew. At the end of each epoch, agents can adjust their bidding
strategy.

The question is whether an agent can formulate a bidding strategy that can
exploit the complementary values in the domain. I.e, can an agent formulate a
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bidding strategy that can increase its chances of exploiting the complementarity
gain in utility for the second and following loads won from the same fruitful
region? Furthermore, in Section 4, we randomize the number of available loads
per fruitful region for each epoch to also quantify the impact of a more stochastic
environment.

The focus on complementary values is more fine grained than the seminal work
of [5] and the continuous extension in [4]. In these works, an agent is faced with
the challenge of participating in a number of sequential auctions, with a known,
fixed order of items. An agent only achieves a positive utility if it is able to acquire
one of several bundles completely. Our domain is smoother in the sense that any
bundle of acquired goods is potentially profitable. Furthermore, the agents in
[5] have a limited budget where we measure performance only in terms of mean
profits. Finally, the agents in [5] model the prices experienced in the previous
rounds of auctions. This is less beneficial in our approach due to larger number
of agents and the randomness of the order of the auctions. The agents in [5] also
assume no correlation in the prices between the auctions, an assumption which
we invalidate. However, modeling of the experienced prices can become beneficial
for learning a more sophisticated bidding strategy than the approach we propose
in Section 3. To apply the dynamic programming techniques of [5,12,8] and
approximations of [4] to our domain with an exponential number of possible
bundles and budget considerations is a challenging venue of research.

3 Strategic Bidding Behavior

In Section 2, we have introduced the model of the agents and auctions along
with the complementary properties of the loads that can be won in the auctions.
Here, we discuss how an agent might exploit this property to increase its expected
profits and present a possible policy for a strategic bidder.

We stress that we do not aim to devise the best possible strategy or even to
analyze all counter strategies. In general, formulating the best possible bidding
strategy for this setting is difficult to analyse (for example as Bayes-Nash), let
alone learn. It is however sufficient for our purposes that being smarter than
other agents gives an added advantage. We can then show that this leads to
an arms race. We present a more game-theoretical analysis of the best-response
strategy in equilibrium in Section 5. Additionally, in Section 6, we show that
more sophisticated learning algorithms can however have a temporary advantage
before equilibrium outcomes are reached due to first-mover principle.

We restrict our discussion to a setting with at least a moderate number of
agents, i.e | Agents |≥ 10. We hereby largely preclude the modeling of specific
opponents and detailed analysis of opponent strategies. We focus on relatively
large-scale settings typical for logistics and strongly competitive environments.
This also makes many machine learning approaches intractable due to the large
state space and the exponentially growing number of possible future states that
can be reached. For example, in [7], 4.5 billion decision nodes are needed for a five
agent, four item sequential auction with 5 bid choices and random tie breaking
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for straightforward expansion to the extensive form of this game. In this setting,
the agents are only interested in one item, and not even bundles of items.

Furthermore, we focus on experimental settings where the total capacity of
the agents exceeds demand, i.e. more loads can be transported than are available
for auction (| Agents | ∗capacity >| Auctions |). This is in line with the field
of logistics where competition is intense and with competitive scenarios where
auctions are most appropriate. It forces the agents to formulate an aggressive
bidding strategy as items for auction are in high demand. In the design of the
bidding strategy, we do not have to explicitly consider the possible scenario of an
agent waiting until all other agents are full before trying to win auctions when
demand exceeds total capacity. In Section 4, we however do predict outcomes
for such scenarios.

We formulate a stochastic bidding strategy for an agent a. For each state s and
a successor state s′ (i.e. for one extra won load for one of the fruitful regions), we
define a local stochastic policy that chooses from a set of three bidding strategies
bi where b1 is the strategy of bidding the immediate valuation, b2 is the strategy
of overbidding the immediate valuation, and b3 is the strategy of bidding less
than the immediate valuation.

Strategy b1 acts as if there is no complementary valuation between the cur-
rent auction and future auctions. An agent using strategy b1 simply bids the
immediate valuation of a good as defined in Section 2. Strategy b2 has a more
aggressive line where a higher bid is submitted than the immediate valuation.
This is the bid as dictated by strategy b1, but increased with a fixed, additive
bidmodifier = 0.1. Strategy b3 returns the bid as in strategy b1 but lowered by
bidmodifier . Intuitively, strategy b1 is the “naive” or myopic bidder. Strategy b2
aims to acquire more than one item from the same fruitful region in order to
acquire the complementary benefit. Strategy b3 is also added to allow an agent
to back off from an auction. This reduce its chances of winning specific auctions
to allow an agent to reserve capacity for more profitable future loads3. We dis-
cuss the impact of various settings of this bid modifier and the possibility for an
agent to learn to set this part of the strategy in Section 6.

For each state s and successor state s′, a local strategy vector sv=< p1, p2, p3 >
where Σi pi = 1 is maintained where pi is the probability of playing bidding
strategy bi when entering an auction for a load l from state s. The policy, the
bidding strategy, of the agent is hence distributed over the state transitions
of the agents and is conditioned on the already won bids and expected future
possibilities. If s′ is however a state where full capacity has been reached, then the
fixed strategy vector is simply < 1, 0, 0 > as there are no future auctions to bid
strategically for. All other strategy vectors are initialised to < 0.9, 0.05, 0.05 >.

During one sequence of auctions (one epoch), for each agent a, a separate
history =< h1, h2, . . . , hn > is recorded where hi registers the knowledge a has
of the results of the ith auction. This entails the results for bidding in the ith
auction (loss or win and paid price), the state of a at that moment, and the

3 Experimental results (not shown) indicated that agents without the option of a
lowered bid performed significantly worse than their more versatile opponents.
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bidding strategy bj used. Additionally, the mean µ = 1
N Σi euroi of the derived

profits and variance σ = 1
N Σi (µ−euroi)2 at the end of each sequence of auctions

are logged per agent. The history, along with the measured performance of a,
is used to update the parameters of the bidding strategy to improve expected
profits per agent.

Per agent, we adjust the local likelihood for strategies for the participated
auctions if, and only if, the derived profits euros for a specific history if euros is
not in the range = [µ− σ, µ + σ]. This indicates that decisions were made that
should be promoted or decreased in likelihood due to the exceptional positive or
negative performance. For a derived profits of euros after a history of bidding,
an euros outside of the range, then ∆ equals the excess in performance outside
of range. This ∆ was caused by the actual strategies used for each state in the
entering of auctions. We are however faced with a credit assignment problem,
i.e. which of the choices are actually responsible for the change in performance?

We use a Monte Carlo-like approach and distribute the credit (∆) evenly over
all strategy choices at the end of one epoch. Each strategy choice in hi ∈ history
is assigned ∆

|history| of the credit. Let s be the state from which the bid in hi

was made for load l and s′ the corresponding successor state. Then the likeli-
hood for playing strategy bk with probability pk for this transition is updated to
pk+1 = pk+α∗∆. To retain unity, the other two strategies are updated to p

k̂+1 =
pk̂ − 0.5 ∗ α ∗∆. The variable α = 0.1 is the learning rate which, unless stated
otherwise, is set low to cope with a highly dynamic environment and to ensure
smooth changes in the behavior of an agent in order to not forget good strategies.

4 Experiments

In this section, we illustrate the phenomena encountered when conducting ex-
periments with competitive agents. We note that the presented results are not
specific to the chosen settings, but are typical for levels of competition between
the agents for available loads and their valuations with complementary values
for bundles.

We first consider 10 agents, each with a capacity of 5. There are three fruitful
regions with 5, 20, and 10 loads for auction in each epoch respectively. There are
hence 35 loads for auction for a total capacity of the agents of 50. In Figure 2a
we show the average utility/profits (and variance) of the agents4 for the above
scenario. The first five agents are strategic bidders and the remaining agents (six
to ten), use straightforward, myopic bidding as defined in Section 3.

The average profits for all 10 myopic bidders for the above setting is ≈ 1.2
(not shown). The 5 strategic bidders in Figure 2a are evidently able to increase
their profits at the cost of the myopic bidders. This is also apparent from a study
of the used capacity of the agents. For 10 myopic agents, each agent uses about
≈ 70% of capacity, i.e. an average of 0.7 ∗ 5 loads is won in the auctions. This is
reduced to only 35% use of capacity for the scenario of Figure 2a as the strate-
gic bidders fill their trucks to near capacity at the cost of the myopic bidders.
4 Results are averaged over a 100 runs that ran to a 100, 000 epochs.
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The strategic bidders use the possibility to overbid in auctions with good effect.
Results for one strategic bidder competing with 9 myopic bidders are even more
skewed as the strategic bidder is able to achieve an average profit of 1.8 and
is filled to capacity. For 10 strategic bidders, agents are however at the same
level of capacity use as for all myopic bidders and loads are distributed evenly.
However, the average profit of the agents has dropped to 0.7. This is worse than
in the all myopic case (≈ 1.2), as agents strongly compete for the items.

In Figure 2b, we show the total average profit of the auctioneers as a function
of the number of agents using a speculative bidding strategy. We present various
settings of the number of loads available in fruitful regions < F1, F2, F3 >.
Clearly, the auctioneers profit from the agents trying to outthink and outbid
each other in competitive settings. The slope of the curve is determined by the
bidfactor employed by the agents and bounded by the total complementary value
of all loads for the agents. The added profits of the auctioneers are reduced as
the number of loads offered in the auctions approaches the total capacity of the
agents. For such scenarios it becomes more useful for agents to wait for cheap
resources in auctions and not bid strategically. Plots of the profits of the agents
like in Figure 2a for the < 17, 17, 17 > scenario show that agents with strategic
bidding perform near identical to myopic players.

In Figure 3a, we compare the profits of the auctioneers as function of the
number of strategic bidders in a more stochastic setting. We have plotted the
curve as usual for the traditional case of 10 agents as above for 9 loads per 3
fruitful regions (< 9, 9, 9 >). We also present results for the same number of
fruitful regions, but with a random number of loads of 8, 9, or 10 equiprobably
and independently available for each of the three fruitful regions each epoch (<
9, 9, 9 > S(tochastic)). The agents therefore are faced not only with competition,
but also with a varying supply of loads for sale per fruitful region.

The agents react by optimizing for the worst case scenario, that of least avail-
able supply. We also observed that competition between the agents can be more
varied for a larger number of fruitful regions. The agents experience a varied
level of competition as the agents oscilate in their choice of targetting the fruit-
ful regions, and hence the competition between the agents induces stochasticity
in the supply.
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Based on Figures 2a and 2b, it is of increasing importance for an agent to bid
aggressively in situations where the supply of loads for transport are increasingly
scarce. In such settings, a myopic bidder is vulnerable to exploitation by strategic
bidders. We also expect that uncertainty in the environment will intensify the
need of profit seeking agents to use an aggressive bidding strategy.

5 A Prisoners’ Dilemma

Section 4 presented results where agents, though learning, are able to exploit
myopic bidders that do not consider the complementary value of future auctions.
However, if all agents bid strategically, results show learning is detrimental from
the viewpoint of the bidders, but positive from the viewpoint of the auctioneers.
In this section, we argue that the model of Section 2 contains settings that lead to
prisoners’ dilemma (PD) [3] type outcomes. The decreasing returns for strategic
bidders in Section 4 are natural in these settings.

In the classic PD, each player has a choice of two operations: either cooperate
(C) with the other player or defect (D). If both players cooperate, they both
receive a given payoff. However, a higher payoff is received by the one player that
defects while the other player receives as “sucker” payoff for cooperating. This
leads both players to pursue the defect strategy and to arrive at the suboptimal
outcome of both players receiving a low reward.

In Figure 3b, we have given the average payoff for 2 players either playing
as myopic bidders (cooperating), or using an overbidding strategy as defined in
Section 3 with a bidmodifier of value 0 < ε < 0.5. We consider the case when
there are 2 loads for auction from the same, and only, fruitful region. For a joint
action of (C,C), both players 50% of the time win the first load for auction and
then win the second load for a marginal profit of 0.5. By overbidding, one of
the players for situation (C,D) or (D,C), can win both loads by overbidding and
thereby clinching the win for the second load. If both players however defect,
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(D,D), then once again both loads are won by one agent. A loss in profit of ε is
however incurred due to the aggressive bidding of the opponent.

According to the classic definitions of the PD, the payoff matrix must meet
the strict conditions T > R > P > S and R > S+T

2 . According to [13], it is
however a sufficient condition for one player to fulfill the condition that ((0.25−
ε) − 0)(0.5 − 0.25) > 0 for this player to have as dominant strategy to play
defect. As the payoff matrix is symmetrical, both players will converge to the
(D,D) equilibrium.

More generally, the n-player Prisoners’ Dilemma game can be defined as in
[17]:

1. each player faces two choices between cooperation (C) and defection (D);
2. the D option is dominant for each player, i.e. each has a better payoff choosing

D than C no matter how many of the other players choose C;
3. the dominant D strategies intersect in a deficient equilibrium. In particular,

the outcome if all players choose their non-dominant C-strategies is prefer-
able from every player’s point of view to the one in which everyone chooses
D, but no one is motivated to deviate unilaterally from D.

More formally, the conditions used in [17] are: (1) Di > Ci for 0 ≤ i ≤ n− 1;
(2) Di+1 > Di and Ci+1 > Ci for 0 ≤ i < n − 1; (3) Ci > (Di+Ci−1)

2 for
0 ≤ i ≤ n− 1. The payoff matrix is symmetric for each player. Here Ci denotes
the reward for cooperating with Ci cooperators and Di the reward for defecting
with i cooperators and n− i− 1 other defectors5.

In Figure 4a we give the (average) payoff of one agent playing with 10 agents
for 3 fruitful regions of value < 9, 9, 9 > as given by experimental results. We
show the expected payoffs for selecting a cooperative (myopic bidding) or a defect
strategy (an overbidding strategy) as function of the total number of cooperators
in the game.

Analysis of a 2 player situation with a payoff matrix of the form of Table 4b
with the rest of the agents invariant and of which 0 ≤ n ≤ 8 choose to cooperate,
shows that each individual agent, when deliberating in isolation, will converge
to defect. The conditions of [13] are again met. Furthermore, [17] showed in
computational experiments that coalitions of cooperators with 8 or more players
were extremely difficult to realize. In [1], these results are improved by allowing
tagging of individuals to enable agents to track defectors, but still cooperation
is extremely tenuous. The auction mechanism as currently defined in Section 2
anonymises the individual agents and precludes tagging. Lastly, the payoffs for
a choice of defect in Figure 4a greatly exceed the bounds of the third condition,
Ci > (Di+Ci−1)

2 , of the nIPD as used in the above work, leading to a stronger
preference for a defect strategy by the agents.

For new domains, and novel settings, it is worthwile to compare the perfor-
mance of a simple bidding strategy, like the one in Section 3, to a myopic bidder
5 Note that these constraints do not reduce to the classic PD for two players, but

thankfully do meet the weaker constraints derived from [13]. The used payoff table
for the experiments of [17] however do meet the 3 criteria given.
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and to verify whether the conditions of the nIPD hold like above. If this is
the case, then there is a strong indication of the equilibrium outcome for more
advanced strategic bidding.

6 Perspectives for the Bidders

In Section 5, we have argued that, in the limit, agents attempting to exploit the
complementary value of future auctions will lead to suboptimal profits due to
the prisoners’ dilemma type nature of the domain. Does this however mean that
agents ultimately cannot benefit from (machine) learning?

The results of Section 4 are presented for bidmodifier = 0.1. This is a rea-
sonable first choice, but agents can individually benefit from a better choice.
In Figure 5(a), we show results for the first 7 agents using a strategic bidding
strategy and the last three agents using a myopic bidding strategy as usual. How-
ever, the first two strategic agents use a bid modifier of bidmodifier + 0.1. The
non-strategic bidders are, of course, worse off but the first two most aggressive
bidders outperform their more conservative rivals.

In Figure 5(b) we again present results for 10 agents. Of these, 8 use an aggres-
sive bid strategy with the standard bidmodifier = 0.1 (overbid) and one uses a
higher bidmodifier of 0.2 (rampant). The last agent is a myopic bidder. Results
give the mean profits as function of the number of epochs learned. We plot results
for the usual learning rate α = 0.1 and a high(er) learning rate of alpha = 0.2.

Study of Figure 5(b) learns that more aggressive overbidding, as expected
from Figure 5(a), is a profitable strategy. Additionally, a better choice in the
learning rate (in this case higher ), results in higher aggregate profits as agents
more quickly adapt towards the equilibrium strategy.

The above two results are of great importance in real-life models or more
stochastic domains. We claim in Section 5 that we can predict the equilibrium
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outcome for smart agents competing in scenarios where resources are scarce. The
perfect tuning of the strategy will however depend on how scarce the resources
currently are and how tactical the opponent agents are. Furthermore, an agent
that is more quickly able to adapt to changing circumstances, i.e. a change in the
number of sold goods in the auctions, or has a better learning algorithm/model,
can likely temporarily exploit the other bidders until the next equilibrium is
reached.

7 Discussion and Conclusion

The application of software agents bidding in online auctions is of increasing im-
portance. In this work, we contributed to the understanding of bidding strategies
for domains where bundles of items are bought in a unknown sequence of auc-
tions where there are complementarities between the items of the bundle. We
show, through experiments and a game theoretical analysis link to the nIPD,
that agents in competitive settings converge to near marginal utility as they at-
tempt to exploit the super additive value in their bids for the individual items.
This is beneficial from the viewpoint of the auctioneers.
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Abstract. Sequential auctions are an important mechanism for buying/selling
multiple objects. Now existing work in the area has studied sequential auctions
for objects that are exclusively either common value or private value. However,
in many real-world cases an object has both features. Also, in such cases, the
common value depends on how much each bidder values the object. Moreover, a
bidder generally does not know the true common value (since it may not know
how much the other bidders value it). Given this, our objective is to study set-
tings that have both common and private value elements by treating each bidder’s
information about the common value as uncertain. Each object is modelled with
two signals: one for its common value and the other for its private value. The
auctions are conducted using English auction rules. For this model, we first de-
termine equilibrium bidding strategies for each auction in a sequence. On the
basis of this equilibrium, we find the expected revenue and the winner’s expected
profit for each auction. We then show that even if the common and private values
of objects are distributed identically across all objects, the revenue and the win-
ner’s profit are not the same for all of them. We show that, in accordance with
Ashenfelter’s experimental results [1], the revenue for our model can decline in
later auctions.

1 Introduction

Market-based mechanisms such as auctions are now being widely studied as a means
of buying/selling resources in multiagent systems. This uptake is occurring because
auctions are both simple and have a number of desirable properties (typically the most
important of which are their ability to generate high revenues to the seller and to allo-
cate resources efficiently) [18,4,20]. Now, in many cases the number of objects to be
auctioned is greater than one. There are two types of auctions that are used for multiple
objects: combinatorial auctions [17] and sequential auctions [7,3,11]. The former are
used when the objects for sale are available at the same time, while the latter (which
are the main focus of this paper) are used when the objects become available at differ-
ent points in time. In the sequential case, the auctions are conducted at different times,
therefore a bidder may participate in more than one auction. In such a scenario, it has
been shown that although there is only one object being auctioned at a time, the bidding
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behaviour for any individual auction strongly depends on the auctions that are yet to be
conducted [7,3]. For example, consider sequential auctions for oil exploration rights.
In this scenario, the price an oil company will pay for a given area is affected not only
by the area that is available in the current round, but also by the areas that will become
available in subsequent rounds of leasing. Thus, it would be foolish for a bidder to spend
all the money set aside for exploration on the first round of leasing, if potentially even
more favourable sites are likely to be auctioned off subsequently.

Against this background, a key problem in the area is to study the strategic behaviour
of bidders in each individual auction. To date, considerable research effort has been
devoted to this problem, but an important shortcoming of existing work on sequential
auctions is that it focuses on objects that are either exclusively private value (different
bidders value the same object differently) or exclusively common value (an object is
worth the same to all bidders) [15,21,16,10,7]. Furthermore, some of this work also
makes the complete information assumption [16,2]. However, most auctions are neither
exclusively private nor common value, but involve an element of both [12]. Again,
consider the above example of auctioning oil-drilling rights. This is, in general, treated
as a common value auction. But private value differences may arise, for example, when
a superior technology enables one firm to exploit the rights better than others. Also, in
such cases, the common value (which is the same for all the bidders) depends on how
much each bidder values the object. Moreover, generally speaking an individual bidder
does not know the true common value, since it is unlikely to know how much the other
bidders value it. On the other hand, the private value of a bidder is independent of the
other bidders’ private values.

Given this, our objective is to study sequential auctions for the general case where
there are both common and private value elements. We do this by modelling each ob-
ject with a two-dimensional signal: one for its common value and the other for its pri-
vate value component. Each bidder’s information about the common value is uncertain.
Also, each bidder needs at most one object. The auctions are conducted using English
auction rules. For this model, we first determine equilibrium bidding strategies for each
auction in a sequence. On the basis of this equilibrium, we find the expected revenue
and the winner’s expected profit for each auction. We show that even if the common and
private values are distributed identically across all objects, the revenue and the winner’s
profit are not the same for all of them1. Specifically, we consider an example scenario
and show that in accordance with Ashenfelter’s empirical result [1], the revenue for our
model can decline in later auctions.

Our paper therefore makes two important contributions to the state of the art in multi-
object auctions. First, we determine equilibrium bidding strategies for sequential auc-
tions that involve both common and private value elements. Second, we show that, in
accordance with Ashenfelter’s experimental results [1], the revenue can decline in later
auctions.

1 This study is important because Ashenfelter [1] showed a declining price anomaly: in real-
world sequential auctions mean sale prices for identical objects decline in later auctions. In
contrast, for objects that are exclusively common/private value, the theoretical results of Mil-
grom and Weber [19,14], and McAfee and Vincent [13] show a completely opposite effect. Our
objective is therefore to show that, for our model, the revenue can decline in later auctions.
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The remainder of the paper is organised as follows. Section 2 describes the auction
setting. Section 3 determines equilibrium bidding strategies. In Section 4, we present
an example auction scenario to illustrate a decline in the revenue of later auctions. Sec-
tion 5 provides a discussion of how our result relates with existing work on sequential
auctions. Section 6 concludes. Appendix A to C provide proofs of theorems.

2 The Sequential Auctions Model

Single object auctions that have both private and common value elements have been
studied in [9]. We therefore adopt this basic model and extend it to cover the multiple
objects case. Before doing so, however, we give an overview of the basic model.

Single object. A single object auction is modelled in [9] as follows. There are n ≥ 3
risk neutral bidders. The common value (V1) of the object to the n bidders is equal,
but initially the bidders do not know this value. However, each bidder receives a signal
that gives an estimate of this common value. Bidder i = 1, . . . , n draws an estimate
(vi1) of the object’s true value (V1) from the probability distribution function Q(v)
with support [vL, vH ]. Although different bidders may have different estimates, the true
value (V1) is the same for all bidders and is modelled as the average of the bidders’
signals: V1 = 1

n

∑n
i=1 vi1. Furthermore, each bidder has a cost which is different for

different bidders and this cost is its private value. For i = 1, . . . , n, let ci1 denote bidder
i’s signal for this private value which is drawn from the distribution function G(c) with
support [cL, cH ] where cL ≥ 0 and vL ≥ cH . Cost and value signals are independently
and identically distributed across bidders. Henceforth, we will use the term value to
refer to common value and cost to refer to private value.

If bidder i wins the object and pays b, it gets a utility of V1−ci1−b, where V1−ci1 is
i’s surplus. Each bidder bids so as to maximize its utility. Note that bidder i receives two
signals (vi1 and ci1) but its bid has to be a single number. Hence, in order to determine
their bids, bidders need to combine the two signals into a summary statistic. This is done
as follows. For i, a one-dimensional summary signal, called i’s surplus2, is defined as:

Si1 = vi1/n− ci1 (1)

which allows i’s optimal bids to be determined in terms of Si1 (see [9] for more details
about the problems with two signals and why a one-dimensional surplus is required).
In order to rank bidders from low to high valuations, Q(v) and G(c) are assumed to
be log concave3. Under this assumption, the conditional expectations E(v|S = x) and
E(v|S ≤ x) are non-decreasing in x. Furthermore, E(c|S = x) and E(c|S ≤ x) are
non-increasing in x. In other words, the bidders can be ranked from low to high values
on the basis of their surplus. We now extend this model to m > 1 objects.

2 Note that i’s true surplus is V1 − ci1 which is equal to vi1/n − ci1 +
∑

j �=i vj1/n. But since
vi1/n − ci1 depends on i’s signals while

∑
j �=i vj1/n depends on the other bidders’ signals,

the term ‘i’s surplus’ is also used to mean vi1/n − ci1.
3 Log concavity means that the natural log of the densities is concave. This restriction is met

by many commonly used densities like uniform, normal, chi-square, and exponential, and it
ensures that optimal bids are increasing in surplus. Again see [9] for more details.
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Multiple objects4. For each of the m > 1 objects, the bidders’ values are independently
and identically distributed and so are their costs. There are m distribution functions for
the common values, one for each object. Likewise, there are m distribution functions
for the costs, one for each object. For j = 1, . . . , m, let Qj : R+ → [0, 1] denote the
distribution function for the value of the jth object and Gj : R+ → [0, 1] that for its
cost. Thus, each bidder receives its value signal for the jth object from Qj and its cost
signal from Gj .

The m objects are sold one after another in m auctions that are conducted using
English auction rules. Furthermore, each bidder receives the cost and value signals for
an auction just before that auction begins. The signals for the jth object are received
only after the (j − 1) previous auctions have been conducted. Consequently, although
the bidders know the distribution functions from which the signals are drawn, they do
not know the actual signals for the jth object until the previous (j − 1) auctions are
over.

Each bidder can win at most one object. The winner for the jth object cannot partic-
ipate in the remaining m− j auctions. Thus, if n agents participate in the first auction,
the number of agents for the jth auction is (n − j + 1). For objects j = 1, . . . , m and
bidders i = 1, . . . , n, let vij and cij denote the common and private values respectively.
The true common value of the jth object (denoted Vj) is:

Vj =
1

n− j + 1

n−j+1∑
i=1

vij (2)

For objects j = 1, . . . , m and bidders i = 1, . . . , n, let Sij = vij/n − cij denote i’s
surplus for object j.

Note that the values/costs for our model are not correlated. Such correlations oc-
cur across objects, if for a bidder (say i) the value/cost of object j = 2, . . . , m can
be determined on the basis of i’s value/cost signal for the first object. However, in
many cases such a direct relation between the objects may not exist. Hence, we focus
on the case where different objects have different distribution functions. Furthermore,
although each bidder knows the distribution functions from which the values/costs are
drawn before the first auction begins, it receives its signals for an object only just before
the auction for that object begins. In the following section, we determine equilibrium
bidding strategies for this multi-object model.

3 Equilibrium Bidding Strategies

The m objects are auctioned in m separate English auctions that are conducted sequen-
tially. The English auction rules are as follows. The auctioneer continuously raises the
price, and bidders publicly reveal when they withdraw from the auction. Bidders who
drop out from an auction are not allowed to re-enter that auction. A bidder’s strategy for

4 Our model for multiple objects is a generalisation of [3]. While [3] studies sequential auctions
for two private value objects, we study sequential auctions for m ≥ 2 objects that have both
private and common values.



34 S.S. Fatima, M. Wooldridge, and N.R. Jennings

the jth (for j = 1, . . . , m − 1) auctions depends on how much profit it expects to get
from the (m− j) auctions yet to be conducted. However, since there are only m objects
there are no more auctions after the mth one. Thus, a bidder’s strategic behaviour during
the last auction is the same as that for a single object English auction. Equilibrium bid-
ding strategies for a single object of the type described in Section 2 have been obtained
in [9]. We therefore briefly summarize these strategies and then determine equilibrium
for our m objects case.

Single object. For a single object with value V1, the equilibrium obtained in [9] is as
follows. A bidder’s strategy is described in terms of its surplus and indicates how high
the bidder should go before dropping out. Since n ≥ 3, the prices at which some bidders
drop out convey information (about the common value) to those who remain active.
Suppose k bidders have dropped out at bid levels b1 ≤ . . . ≤ bk. A bidder’s (say i’s)
strategy is described by functions Bk(Si; b1 . . . bk), which specify how high it must bid
given that k bidders have dropped out at levels b1 . . . bk and given that its surplus is Si.
The n-tuple of strategies (B(·), . . . , B(·)) with B(·)) defined in Equation 3, constitutes
a symmetric equilibrium of the English auction.

B0(xi1) = E(vi1 − ci1|Si1 = xi1)

Bk(xi1; b1 . . . bk) =
n − k

n
E(vi1|Si1 = xi1) +

1
n

k−1∑
y=0

E(vi1|By(Si1; b1, . . . , by) = by+1)

−E(ci1|Si1 = xi1) (3)

where xi1 is i’s surplus. The intuition for Equation 3 is as follows. Given its surplus and
the information conveyed in others’ drop out levels, the highest a bidder is willing to go
is given by the expected value of the object, assuming that all other active bidders have
the same surplus. For instance, consider the bid function B0(Si1) which pertains to the
case when no bidder has dropped out yet. If all other bidders were to drop out at level
B0(S0), then i’s expected payoff (ep = V1 − ci1 −B0(S0)) would be:

ep = Si1 +
n− 1

n
E(v|S = S0)− B0(S0)

= Si1 +
n− 1

n
E(v|S = S0)− E(v − c|S = S0)

= Si1 − S0

Using strategy B0, i remains active until it is indifferent between winning and quitting.
Similar interpretations are given to Bk for k ≥ 1; the only difference is that these
functions take into account the information conveyed in others’ drop out levels.

Let fn
1 denote the first order statistic of the surplus for the n bidders and let sn

1 denote
the second order statistic. fn

1 and sn
1 are obtained from the distribution functions Q1 and

G1. For the above equilibrium, it has been shown that the bidder with the highest surplus
wins and the expected revenue (denoted ER) is [9]:

ER = E(V )− E(c|s = fn
1 )− E(πw) (4)
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where E(πw) is the winner’s expected profit. This profit is:

E(πw) = E(fn
1 )− E(sn

1 ) (5)

On the basis of the above equilibrium for a single object, we determine equilibrium
for sequential auctions for the m objects defined in Section 2 as follows.

Multiple objects. We first introduce some notation and them derive the equilibrium.
We will denote the first order statistic of the surplus for the jth (for j = 1, . . . , m)
auction as fn−j+1

j and the second order statistic as sn−j+1
j . Also, we denote a bidder’s

cumulative ex-ante expected profit from auctions j to m (where 1 ≤ j ≤ m) as αj .
Finally, we denote the winner’s expected profit for the jth auction as E(πwj). Given
this, the following theorem characterises the equilibrium for m > 1 objects.

Theorem 1. For 1 ≤ j ≤ m and j ≤ y ≤ m, let βy
j and αj be defined as:

βy
j = [

y−1∏
k=j

(1− 1/(n− y + k + 1))][1/(n− j + 1)] (6)

αj =
m∑

y=j

(βy
j [E(fn−j+1)− E(sn−j+1) + αj+1]) (7)

where αm+1 = 0. Then the n-tuple of strategies (B(·), . . . , B(·)) with B(·) defined in
Equation 8 constitutes an equilibrium for the jth (for j = 1, . . . , (m− 1)) auction at a
stage where k bidders have dropped out:

Bj
0(xij) = E(vij − cij |Sij = xij)− αj+1

Bj
k(xij ; b1, . . . , bk) =

n− j + 1− k

n− z + 1
E(vij |Sij = xij)− E(cij |Sij = xij)

+
1

n− j + 1

k−1∑
y=0

E(vij |By(Sij ; b1, . . . , by) = by+1)

−αj+1 (8)

For the last auction, the equilibrium is as given in Equation 3 with n replaced with
(n−m + 1).

For the above equilibrium, the winner for the jth (for j = 1, . . . , m) auction is the bid-
der with the highest surplus for that auction (see proof of Theorem 3 in the appendix for
details). The following two theorems characterise the expected revenue and the winner’s
expected profit.

Theorem 2. For the jth (for j = 1, . . . , m − 1) auction, the winner’s expected profit
(denoted E(πwj)) is:

E(πwj) = E(fn−j+1
j )− E(sn−j+1

j ) + αj+1 (9)

and for the last auction, the winner’s expected profit is:

E(πwm) = E(fn−m+1
m )− E(sn−m+1

m ) (10)
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Theorem 3. For the jth (for j = 1, . . . , m) auction, the expected revenue (denoted
ERj)) is:

∀m
j=1ERj = E(V )− E(c|s = fn−j+1

j )− E(πwj)
(11)

In the following section, we use the above equilibrium to show how the expected rev-
enue and the winner’s expected profit vary from auction to auction.

4 Revenue and Winner’s Profit

In Section 3, we determined equilibrium for the case where the distribution function for
the value (cost) was different for different objects. In this section, our objective is to
show that even if these distribution functions are identical across objects, the expected
revenue is not the same for all objects. We present an example auction scenario which
shows that in accordance with Ashenfelter’s empirical result [1], the revenue for our
model can decline in later auctions.

It must be noted that our objective here is not to provide a comprehensive study of
how the expected revenue varies, but only to illustrate (with an example) that there exist
cases where the variation predicted by our theoretical analysis accords with the experi-
mental results of Ashenfelter [1].

Example auction scenario. This example in intended to show that:

- the revenue declines in later auctions (this result corresponds with Ashenfelter’s
empirical results [1]), and

- the winner’s expected profit declines in later auctions.

In more detail, the setting for our analysis is as follows. The bidders’ values are
identically distributed across objects and so are their costs. The common values of all
m objects are drawn from a single distribution function. This function (say Q : R+ →
[0, 1]) is used to draw the common value of the jth (j = 1, . . . , m) object. Also, there
is a single distribution function (say G : R+ → [0, 1]) for the cost of the jth (j =
1, . . . , m) object. As before, each bidder receives a value signal (from Q) and a cost
signal (from G) for an auction just before that auction begins.

Since there is a single distribution function for all objects, we drop the subscripts
(for the order statistics) in Equations 9 and 11 for profit and revenue and rewrite them
as:

E(πwj) = E(fn−j+1)− E(sn−j+1) + αj+1 (12)

ERj = E(V )− E(c|s = fn−j+1)− E(πwj) (13)

We determine the expected revenues for the case where the values and costs are dis-
tributed normally. Recall that the normal distribution satisfies the log concavity assump-
tion mentioned in Section 2. Both value and cost signals are distributed normally. The



An Analysis of Sequential Auctions for Common and Private Value Objects 37

1 2 3 4 5 6 7 8 9
196.7

196.8

196.9

197

197.1

197.2

197.3

Auction

Ex
pe

ct
ed

 R
ev

en
ue

 

 
m=9,n=20

Fig. 1. A varying revenue in a series of auctions for the normal distribution
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Fig. 2. A bidder’s cumulative ex-ante expected profit (αj) for the normal distribution

normal distribution is denoted N (µ, ν) where µ is the mean and ν is the variance. Let
µv, µc, and µs denote the mean for the value, cost and surplus respectively. Also, let
νv, νc, and νs denote the variance for the value, cost, and surplus respectively. We took
µv = 200, µc = 2, νv = 0.5, and νc = 0.5. These values ensure that cL > 0 and
vL > cH for more than 99.8 percent of the population. Given this, for the jth auc-
tion, we get the mean and variance for the surplus as µs = µv/(n − j + 1) − µc and
νs = 1.0 [6].

Let F (x) and f(x) denote the distribution and density function for the surplus where:

f(x) =
1

νs

√
2π

e−(x−µs)2/2νs
2

From a continuous distribution with cumulative distribution function F (x), if n ran-
dom samples are drawn, then the expectation of the second highest order statistic of
these n samples between limits x and x is [5]:

E(sn) = n(n− 1)
∫ x̄

x

x[F (x)]n−2[1− F (x)]f(x)dx (14)
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Fig. 3. The winner’s expected profit for the normal distribution
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Fig. 4. Revenue for a varying competition

and the difference between the first and second highest order statistics is [5]:

E(fn)− E(sn) = n

∫ ∞

−∞
[F (x)]n−1[1− F (x)]dx (15)

We substitute these values for E(sn) and E(fn)− E(sn) to find the expected revenue
and the winner’s expected profit for each individual auction in a series.

The variation in the revenue for different auctions is shown in Figure 1. As shown
in the figure, the expected revenue decreases from one auction to the next. A bidder’s
cumulative ex-ante expected profit from auctions j to m (i.e., αj ) is shown in Figure 2.
This profit decreases from one auction to the next. The winner’s expected profit also
drifts downward as shown in Figure 3.

The effect of competition. In order to study the effect of competition, we fix the number
of objects (m) and vary the number of bidders (n) for the example scenario described
above. Figure 4 is a plot of the expected revenue for different n. As seen in the figure,
for all the three values of n (i.e., n = 20, n = 19, and n = 18) the seller’s revenue
declines from one auction to the next. Figure 5 is a plot of the winner’s expected profit
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Fig. 5. The winner’s expected profit for a varying competition

for different n. As seen in the figure, for all the three values of n, the winner’s expected
profit also decreases from one auction to the next.

5 Related Work

Existing work has studied the dynamics of the revenue of objects for sequential auc-
tions [15,19,14,3]. However, a key limitation of this work is that it focuses on objects
that are either exclusively private value or exclusively common value. For instance,
Ortega-Reichert [15] determined the equilibrium for sequential auctions for two private
value objects using the first price rules. Weber [19] showed that in sequential auctions
of identical objects with risk neutral bidders who hold independent private values, the
expected revenue is the same for each auction. On the other hand, Milgrom and Weber
[14] studied sequential auctions in an interdependent values model with affiliated5 sig-
nals. They showed that expected revenues have a tendency to drift upward. This may
be because earlier auctions release information about the values of objects and thereby
reduce the winner’s curse problem.

In contrast to the above theoretical results, there has been some evidence in real-
world sequential auctions for identical objects – for art and wine auctions in particular –
that the prices tend to drift downward [1,13]. Because the theoretical models mentioned
above predict either a stochastically constant or increasing price, this fact has been
called the declining price anomaly. Mc Afee and Vincent [13] consider two identical
private value objects and using the second price sealed bid rules, they show that the
declining price anomaly cannot be explained even if the bidders are considered to be
risk averse. Bernhardt and Scoones [3] show a decline in the sale price by considering
two private value objects. Here, we generalise this model to n > 2 objects with both
common and private values6. Although the objects we consider have both common and

5 Affiliation is a form of positive correlation. Let X1, X2, . . . , Xn be a set of positively corre-
lated random variables. Positive correlation roughly means that if a subset of Xis are large,
then this makes it more likely that the remaining Xjs are also large.

6 Multi-object auctions for common and private value objects have been studeied in [8]. This
work focusses on the efficiency of these auctions, while our present work focusses on the
variation in the revenue of such auctions.



40 S.S. Fatima, M. Wooldridge, and N.R. Jennings

private values, each bidder receives its signals for an auction just before the auction
begins. In other words, during an auction, the information that bidders obtain about the
others’ value signals does not carry forward to subsequent auctions. Hence, as in the
case of [3], our model too shows a decline in the revenue.

6 Conclusions and Future Work

This paper has analyzed a model for sequential auctions for objects with private and
common values in an uncertain information setting. We first determined equilibrium
strategies for each auction in a sequence. Then we showed that even if the value and cost
signals are distributed identically across objects, then in accordance with Ashenfelter’s
result [1], the expected revenue can decline in later auctions.

There are many interesting directions for future work. First, our present focus was on
determining how the expected revenue varies in a series of English auctions. However,
in order to generalize our results, we intend to extend the analysis to other auction
forms. Second, we studied the case where bidders received the cost and value signals
for an object just before the auction. In future, we will extend the analysis to the case
where the values and costs for the last (m − 1) objects can be determined from the
signals for the first object (i.e., values and costs are perfectly correlated).
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Appendix

A Proof of Theorem 1

Proof. We consider each of the m auctions by reasoning backwards.

– mth auction. To begin, consider the mth auction for which there are (n−m + 1)
bidders. Since this is the last auction, an agent’s bidding behaviour is the same as
that for the single object case. Hence, the equilibrium for this auction is the same
as that in Equation 3 with n replaced with (n − m + 1). For j = 1, . . . , m, let
αij denote an agent’s cumulative ex-ante expected profit from auctions j to m.
Recall that although the bidders know the distribution (from which the cost and
value signals are drawn) before the first auction begins, they draw the signals for
the jth auction only after the (j − 1) earlier auctions end. Since αij is the ex-ante
expected profit (i.e., it is computed before the bidders draw their signals for the jth
auction), it is the same for all participating bidders. Thus, we will simplify notation
by dropping the subscript i and denote αij simply as αj We know from Equation 5
that:

αm =
1

n−m + 1
(E(fn−m+1

m )− E(sn−m+1
m )) (16)

This is because all the (n−m + 1) agents that participate in the mth auction have
ex-ante identical chances of winning it. Note that the right hand side of Equation 16
does not depend on i. In other words, since bidders receive their signals for the mth
auction after the (m− 1)th auction, the ex-ante expected profit for the mth auction
(before the (m− 1)th auction ends) is the same for all the (n−m + 1) bidders.

– (m− 1)th auction. Consider the (m − 1)th auction. During this auction, a bidder
bids b if (Vm−1−cm−1−b ≥ αm) or (b ≤ Vm−1−cm−1−αm). Hence, a symmetric
equilibrium for the (m − 1)th auction is obtained by substituting j = m − 1 in
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Equation 8. We know from Equation 4, that the expected revenue for the single
object case is the second order statistic of the surplus. The difference between the
equilibrium bids for the single object case and the (m − 1)th auction of the m
objects case is αm (see Equations 3 and 8). Hence, the expected revenue for the
(m − 1)th auction is E(sn−m+2

m−1 ) − αm. This implies that the winner’s expected
profit for the (m− 1)th auction is:

E(πw(m−1)) = E(fn−m+2
m−1 )− E(sn−m+2

m−1 ) + αm (17)

– First (m−2) auctions. We now find α1, . . . , αm. For 1 ≤ j ≤ m and j ≤ y ≤ m,
let βy

j denote the ex-ante probability that a bidder wins the yth auction in the series
from jth to the mth auction. This probability is

βy
j = [

y−1∏
k=j

(1− 1/(n− y + k + 1))][1/(n− j + 1)] (18)

Also, let αj denote a bidder’s cumulative ex-ante expected profit for all the auctions
from the jth to the mth. This profit is:

αj =
m∑

y=j

(βy
j [E(fn−j+1)− E(sn−j+1) + αj+1]) (19)

where αm+1 = 0. Generalising Equation 17 to the first (m − 1) auctions, we get
the winner’s expected profit (E(πwj)) as:

E(πwj) = E(fn−j+1
j )− E(sn−j+1

j ) + αj+1 (20)

In other words, a bidder’s optimal bid for the jth auction is obtained by discounting
the single object equilibrium bid by αj+1. Hence, we get the equilibrium bids in
Equation 8.

B Proof of Theorem 3

Proof. For the jth (for j = 1, . . . , m) auction, the total expected surplus that gets split
between the auctioneer and the winning bidder is E(V ) − E(c|s = fn−j+1

j ). From
this surplus, the winning bidder gets a share of E(πwj). Hence, the seller’s revenue is
ERj = E(V )− E(c|s = fn−j+1

j )− E(πwj).

C Proof of Theorem 2

Proof. The mth auction is identical to the single object case. Hence, the expected profit
for this auction is:

E(πwm) = E(fn−m+1
m )− E(sn−m+1

m )

Since the difference between the expected revenue for the single object case and the jth
(for j = 1, . . . , m − 1) auction of the m objects case is αj+1, the winner’s expected
profit for the jth auction is E(πwj) = E(fn−j+1

j )− E(sn−j+1
j ) + αj+1.
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Abstract. The problem of optimal winner determination in combinato-
rial auctions consists of finding the set of bids that maximize the revenue
for the sellers. Various solutions exist for solving this problem but they
are all centralized. That is, they assume that all bids are sent to a cen-
tralized auctioneer who then determines the winning set of bids. In this
paper we introduce the problem of distributed winner determination in
combinatorial auctions which eliminates the centralized auctioneer. We
present a set of distributed search-based algorithms for solving this prob-
lem and study their relative tradeoffs.

1 Introduction

In a combinatorial auction the buyers bid on bundles of items. After clearing,
each buyer receives either the entire bundle he bid on or nothing. Combinato-
rial auctions are often preferred over sequential auctions because bidders can
express complementarity and substitutability of their choices within the bids.
The optimal winner determination problem in a combinatorial auction involves
finding the set of bids that maximizes the revenue generated. This problem
is known to be an NP-Hard problem [1]. Various centralized approaches us-
ing A∗ [2], dynamic programming [1], integer programming [3], linear program-
ming [4], and approximation techniques [5] have been proposed for determining
the optimal and approximately-optimal solution. All these algorithms assume the
existence of a centralized auctioneer who collects all the bids and computes the
set of winning bids. All these algorithms also fail to address the question of
revenue division amongst the winning goods. In this paper we investigate the
problem of distributed winner determination, that is, the determination of the
set of winning bids in the absence of a centralized auctioneer. We provide some
distributed search-based solutions as well as a negotiation-based approach which
also performs revenue division.

Our research is motivated by a vision of a future Internet-based distributed
electronic marketplace. The system would be a peer-to-peer system, without the
need for a centralized auctioneer, and would have to provide the proper incentives
for selfish agents to participate and perform their duties as required. For such a
system to exist we will need, among other technologies, protocols that distribute
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the computational task of winner determination. But, since the agents perform-
ing the computation have an interest in the outcome of the computation and
might try to manipulate it, we need protocols that provide the correct incentives
to agents and prevent them from manipulating the outcome. As such, our prob-
lem is an instance of a distributed algorithmic mechanism design problem [6,7].
Hence it is also essential that we address the issue of revenue distribution among
the sellers in each winning combinatorial bid, an issue that has not been ad-
dressed by any of the centralized winner determination algorithms we have found.

Specifically, we assume that each agent has a good for sale and receives com-
binatorial bids from prospective buyers. The agents must then implement some
protocol which will lead to the distributed calculation of the set of winning bids.
We consider both the case where the agents are cooperative and when they
are selfish. A system with cooperative agents could arise if all the agents are
owned by the same entity or if the participants have previously arrived at an
off-line agreement. Selfish agents more closely simulate the selfish interests of
their human counterparts who want to maximize their profit.

We start by covering some of the past work on combinatorial auctions in sec-
tion 2. Section 3 formally defines the distributed combinatorial auctions problem.
Sections 4, 5 and 6 give a complete algorithm, a simple hill-climbing algorithm
and a partitioning-based algorithm, respectively. Section 7 provides a negotiation
based approach. Finally, section 8 shows our test results and section 9 discusses
the future work.

2 Related Work

Sandholm [2] has given an algorithm for calculating the optimal set of bids in a
combinatorial auction using an implementation of A∗. Hoos and Boutilier have
provided a solution using stochastic local search [8]. Rothkopf et al. provides a
solution using dynamic programming [1]. Fujishima et al. proposes one method
to speed up the search by structuring the search space and a heuristic method
that lacks optimality guarantees but performs well on average [9]. All these
algorithms are centralized.

In the area of multiple agents operating simultaneously in a market setting,
Preist provides an algorithm for agents that participate in multiple English auc-
tions [10,11]. Wellman et. al. [12] use a market mechanism to solve a decentralized
scheduling problem. Both solve different problems from ours. The reader new to
combinatorial auctions can read the survey provided by [13].

3 Problem Description

A distributed combinatorial auction is defined as a set goods G where gi ∈ G
and |G| = n, a set of consumers C where ci ∈ C and |C| = k, and a set of bids B
where bi ∈ B. Each bid bi is a tuple {c, g, p} where c is the consumer who placed
the bid, g ⊆ G is the set of goods being bid on, and p is the bid price. There is
no centralized auctioneer who collects these bids. We will use bg

i to refer to the
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set of goods for bid bi, bp
i to refer to the price of bid bi and gb

i to refer to the list
of bids in which good gi is present.

Each consumer can place any number of bids1. The bid can be for either a
single good or a combination of goods. For example, consumer ci can place a bid
bk on the bundle {g1, g4, g7} for a value of v1 and another bid bj on bundle {g2}
for value v2.

Definition 1 (Feasible Allocation). An allocation A of goods is a feasible
allocation if and only if no two bids in the allocation share a good.

The set of all feasible allocations, given B, is given by F which is

F ≡ {b ⊆ B | ∀bi,bk∈A,i�=kbg
i ∩ bg

k = ∅}. (1)

The value of an allocation A is given by

V (A) =
∑
b∈A

bp. (2)

The revenue maximizing solution A∗ is the feasible allocation that maximizes
the total price paid for all the goods, that is A∗ = arg maxA⊆F V (A).

In distributed combinatorial auctions there is no centralized auctioneer who
collects all the bids. Instead, we assume that each good for sale is represented
by an agent. When a consumer places a bid bi, the bid is passed on to bg

i which
are the agents representing the goods present in the bids2. Any agent gi can
communicate with any other agent. Thus each agent has the list of bids in which
it is present.

We further assume that a bid can be cleared if and only if all the agents in
the bid agree to clear it. The final agreement reached by the agents is final and
binding. We also assume that the agents don’t have a reservation price for their
goods and that goods can be sold only once. Finally, some of the algorithms we
will introduce make use of w(b) which is the average price per good for bid b.
That is, w(b) = bp

|bg| .
The question we try to answer is: How can the agents determine the set of

winning bids in the absence of the centralized controller?

4 Complete Search Algorithm

In a complete search the agents search over the space of all the possible alloca-
tions to determine the optimal allocation. Since there is no centralized auctioneer
that has global information, the agents must pass messages to each other and
perform the search in a distributed manner.

In this algorithm we assume that the agents possess a linear ordering such
that every agent has a child variable which points to its child, except for the
leaf node who sets this variable to ∅. Each agent also maintains the following
variables:
1 In our paper, we assume that each consumer places a single bid.
2 We use the terms “agent” and “good” interchangeably.
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Complete-Search(allocation-from-parent)
1 global -utility ← 0
2 final -allocation ← ∅
3 cleared -goods ← ⋃

b∈allocation-from-parent bg

4 valid -bid -pool ← {b ∈ bid -pool | ∀g∈bgb /∈ cleared -goods}
5 if child = ∅ � I am leaf.
6 then final -allocation ← allocation-from-parent ∪ arg maxb∈valid-bid-pool w(b)
7 return final -allocation
8 if valid -bid -pool = ∅
9 then final -allocation ← child .Complete-Search(allocation-from-parent)

10 else
11 for bid ∈ valid -bid -pool
12 do new -allocation ← allocation-from-parent ∪ bid
13 allocation-from-successor ← child .successor(new -allocation)
14 if V (allocation-from-successor ) > V (global -utility)
15 then global -utility ← V (allocation-from-successor )
16 final -allocation ← new -allocation
17 return final -allocation

Fig. 1. Complete search algorithm. It is started by calling the root agent with
Complete-Search(∅).

– bid -pool is the list of bids in which it is present,
– final -allocation is the best allocation encountered thus far in the execution,
– global -utility is the utility of the final-allocation,

Each agent adds zero-valued singleton bid for itself, even if a singleton bid is
present in the list of bids. This bid enables the agent to search for the allocations
where the agent is not cleared in any bid. The head agent (whose execution is
initiated by the controller3) does not have any parent. Similarly the last agent
in the ordering does not have a child agent so it does not send a message to child
or wait for a reply. The agents search all the possible allocations to determine
the optimal winner, see Figure 1.

We can prove the correctness of this algorithm by observing that the algo-
rithm is performing a linear search of all the feasible allocations4. The agents
simply implement a depth first search over all possible bid sets except that they
only check feasible bid sets. As such, this algorithm sequentializes the agents’
execution so it has a long running time.

5 Individual Hill-Climbing Algorithm

We now present an algorithm that creates a feasible allocation using a simple
hill-climbing approach. In this approach, the agents simply clear bids in a greedy
3 The controller does not control any agents, it simply initiates the execution of the

head agent.
4 Proofs omitted due to lack of space.
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Cleared(sender)
1 list-of -bids ← {b ∈ list-of -bids | sender /∈ bg}
2 if list-of -bids = ∅
3 then Exit � We are done. I did not sell my good.
4 Send-Accept()

Accept(sender , bid)
1 accepted [bid ] ← accepted [bid ] ∪ sender
2 if accepted [best-bid ] = best-bidg � Everyone has accepted it.
3 then for agent ∈ neighbors
4 do agent .Cleared(gi)
5 Exit � We are done. I sold my good.

Send-Accept()
1 if best-bid /∈ list-of -bids
2 then best-bid ← arg maxb∈list-of -bids w(b)
3 accepted [best-bid ] = accepted [best-bid ] ∪ gi

4 for agent ∈ best-bidg

5 do agent .Accept(gi, best-bid)

Hill-Climbing()

1 list-of -bids ← gb
i

2 neighbors ← ⋃
b∈gb

i
bg

3 best-bid ← ∅
4 Send-Accept()

Fig. 2. Hill-Climbing algorithm. It is started by having all agents execute Hill-
Climbing.

fashion ordered by w(b), the average value per good until there are no more bids
that can be cleared. In fact, this algorithm is but a variation of the algorithm
given in [14] for coalition formation.

The algorithm proceeds as follows: Each agent finds the bid in its list-of -bids
which has the highest average value. The agent then sends an Accept message
to the goods that are present in this bid. The agent clears this bid only when
it receives an Accept message from all the goods in this bid. This ensures
that a bid is cleared if and only if all the goods in the bid agree to clear it.
When an agent clears a bid, it sends a Cleared to all its neighbors—the set
of agents with which it shares some bid—telling them that it has cleared and
all bids including the agent should be dropped from consideration. The agents
that receive a Cleared message from agent sender delete the bids sender b.
The agents stop execution when they clear a bid or the list-of -bids is empty. See
Figure 2 for the complete algorithm.

It is easy to show that this algorithm always finds a feasible allocation and
never enters a deadlock as it only considers feasible solutions. However, the
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algorithm is not guaranteed to converge to the global optimal allocation as it
can get stuck at a local maxima by clearing a bid that has high w(b) but is not
to be found in the optimal allocation.

6 Partitioning Based Search

The greedy algorithm produces a non-optimal solution in polynomial time and
the complete search provides the optimal solution in exponential time. Although
the complete algorithm determines the optimal winner in a distributed manner,
there is no parallelism as only one agent is active at any instant. The agents in
the hill-climbing algorithm execute in parallel but they can get stuck at local
maxima. Hence we now present a partitioning based approach. Our main moti-
vation for proposing this approach is to obtain solutions whose quality is better
than solutions produced by greedy approach but where the execution is compa-
rable to the time taken by the greedy algorithm. In this approach, we partition
the goods and the agents perform a complete search within the group (while
ignoring the bids outside the partition). The algorithm proceeds as follows:

1. The controller partitions the agents into different groups. The controller also
selects the headAgent of every group.

2. Each agent is provided with its partition information (the linear ordering in
its partition).

3. Each agent deletes the bids that contain any good not present in its partition.
4. The controller initiates the Complete-Search algorithm in every partition.

In order to explain how the controller partitions the agents, we first define
the following:

Definition 2 (Graphical representation of Combinatorial Auction). A
combinatorial auction can be represented as a graph G = (N, E), where N is the
set of nodes and E is the set of edges. Each node corresponds to a good on sale.
An edge exists between any two nodes if they are present in the same bid.

It is not always possible to divide the goods into disjoint partitions (where there is
no edge between partitions). There could be bids on goods in different partitions.
Currently, we use a greedy approach to address this issue. The agents do not
consider the bids that have a good that is not present in its partition. This
approach will result in an optimal solution only if the ignored bids are not part
of the optimal allocation.

7 Negotiation Based Approaches

The search-based approaches provided in the earlier sections ignored the issue of
splitting revenue among multiple sellers. That is unrealistic in cases where, for
example, one agent has a good that is in much more demand than all the other
goods in the combinatorial bids that it is in. This problem has been identified
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Cleared(j)
1 list-of -bids ← {b ∈ list-of -bids | j /∈ b}
2 Update-Best-Bid

Ready(j, bid)
1 ready [j] ← bid
2 if ∀g∈bidg ready [g] = bid
3 then for g ∈ neighbors
4 do g.Cleared(i)
5 Exit � Cleared my good with bid .

Tell-Ask-Value(j, val)
1 ask-value [j] ← val
2 Update-Best-Bid()

Fig. 3. Modified MCP message receiving procedures

for a long time by sociologists studying social networks [15], and by economics
studying social networks [16] (note that their networks are different, even if they
refer to them by the same name). We use two approaches for addressing the
issue of revenue division. The first technique is inspired from the well-studied
monotonic-concession protocol [17] and in the second approach we borrow results
from sociological network exchange theory [15].

7.1 Modified Monotonic Concession Protocol

In this section we propose a modified version of the Monotonic Concession Pro-
tocol (MCP). In MCP the two negotiating nodes alternately propose a deal that
allocates the revenue between the agents. A deal d consists of the tuple (p1, p2)
such that p1 +p2 = bp, where p1 is the amount agent 1 gets and p2 is what agent
2 gets. If the receiving node gets an offer where it gets more than or equal to
what it had asked for in the last round the protocol terminates. If the receiving
node does not agree to the offer, in next round it should propose a new deal,
subject to the condition that its payment for the other agent must be strictly
higher than in the previous deal. This protocol will either converge to a solution
or terminate without agreements if time runs out. Unfortunately, MCP can only
be used for bi-party negotiation.

We propose a modified-MCP (mMCP) that can be used for simultaneous
multi-party negotiation for the division of the revenue. In it, each agent maintains
an ask -value which is initialized to the maximum the agent can expect to get
given the bids it is involved in. The algorithm then proceeds as follows:

1. At each time-step, the agents send their ask -value to other agents with which
it is involved in negotiation. As in MCP, the agents have to reduce their
ask -value from what they demanded in the previous round.

2. Upon receiving the ask -value of its neighbors the agent checks if it can still get
its ask -value for the bids in which it is present, that is,

∑
i∈bg ask -valuei ≤ bp.
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Update-Best-Bid()
1 for b ∈ list-of -bids
2 do demand [b] ←∑

g∈bg ask-value[g]
3 ready-to-clear ← {b ∈ list-of -bids | demand [b] ≤ bp}
4 if ready-to-clear �= ∅
5 then
6 Sort ready-to-clear first by demand and second by bid id.
7 best-bid ← first(ready-to-clear )
8 for agent ∈ best-bidg

9 do agent .Ready(i, best-bid)
10

mMCP()
1 for j ∈ G
2 do ask-value [j] ← ∞
3 neighbors ← ⋃

b∈gb
i

bg

4 list-of -bids ← gb
i

5 for ask-value[i ] ← maxb∈gb
i
bp to 0 step 1

6 do for agent ∈ neighbors
7 do agent .Tell-Ask-Value(i, ask-value [i])
8 Wait for all neighbors to tell me their ask-value
9 Exit � Unable to clear my good.

Fig. 4. Modified MCP main procedures.The algorithm starts by having all agents ex-
ecute mMCP

3. If the agent can get its ask -value on any bid, it clears the bid and it informs
the other agents with which it is negotiating that it is out of negotiations.

Just like in MCP, since every node has to lower its ask -value in successive it-
erations, the nodes converge to a solution. However, a problem with the mMCP
is that it can cause some revenue to be left unallocated, which happens when
the revenue is not evenly divisible by the number of participants given the decre-
ment step (which is 1 in the algorithm as shown but can be set to any positive
constant). See Figures 3 and 4 for the detailed algorithm.

7.2 Sociological Network Exchange Theory

Sociological Network Exchange Theory (NET) studies the effects of power on the
outcomes of exchanges between people in power relation-networks. In a network,
the nodes are the participants and any two nodes can negotiate (for dividing a
resource or exchanging goods) if they have an edge between them. The edges
represent the amount the agents are trying to divide. Based on extensive studies
with human subjects, Sociologists have been able to identify equations that can
predict the outcome of human negotiations in particular networks.

Specifically, in [15, Chapter 2] Willer presents an equation which predicts that
an exchange occurs on any relation between two nodes at equi-resistance. For
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example, if nodes A and B want to divide some resource between them then the
amounts that A and B will agree on (PA and PB respectively) can be obtained
by solving equations (3) and (4) for PA and PB. In these equations, P con

A is the
amount that A makes if it has a confrontation with B (i.e., it doesn’t exchange
with B) and Pmax

A is the maximum that A can make from exchange with B.

Pmax
A − PA

PA − P con
A

=
Pmax

B − PB

PB − P con
B

(3)

PA + PB = TotalRevenue (4)

Equation (3) tells us that the resistance of A must be equal to the resistance of
B. Equation (4) tells us that the sum of the payments must be equal to the total
revenue. We can easily generalize these equations to n agents by simply adding
another resistance equation for each agent and insisting that all resistances must
be the same5. In all cases we end up with n + 1 equations of n variables, so we
can solve for the payments.

The iterated equi-resistance method [15] tells us to start out with initial pay-
ments for the agents equal to an even distribution of the total revenue and then
iteratively solve the resistance equations for each agent in order to find its pay-
ment given those of the other agents. We are to continue doing this for several
rounds or until the system stabilizes. At some point, the agents decide to take
the deal (bid) for which they are to receive the highest payment.

This method is easy to implement in a simulator. All we need to do is at each
time step calculate the agents’ payments by solving the equi-resistance equations.
We can then continue to do this until either the payments stabilize or we detect

5 However, we must stress that studies with human subjects only consider binary
negotiations. As such, there is no empirical evidence to suggest that human behavior
can be predicted using the equi-resistance equation for negotiations among three or
more agents.
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that they have entered a cycle. This type of implementation is the one we have
used for the test results in section 8.

We do not yet have a distributed algorithm that can implement this method.
One problem is the fact that the calculation of an agent’s payments requires
knowledge of the P con values for all the agent’s neighbors. It is unclear to us
how an agent might come to acquire this knowledge if we assume that all agents
are selfish. Still, since this method is predicts the behavior of humans, who do
not know their opponents’ P con values, we are confident that we will come up
with an appropriate distributed algorithm in the near future.

8 Preliminary Results

The input data for our algorithms was generated using CATS [18] using random
distribution. Figure 5, compares the value of allocation for the three search
algorithms. The first point on x-axis consists of 10 goods and 50 bids (thereafter
the goods and bids increment by 5 and 50 respectively). The values shown in the
figure are the average of 25 runs. As expected, the complete algorithm computes
the solution with best revenue. Similarly, figures 6 and 7 compare the messages
passed and the execution time (in clock ticks6) respectively for the three search
algorithms. The complete search algorithm takes exponential time O(n|b|) to
provide the optimal allocation. The greedy algorithm takes linear time O(|b|),
where n is the number of goods and |b| is the number of bids.

Figure 8 shows the value of the allocations produced by mMCP and iterated-
resistance equations. The simulations were run on randomly generated data on
NetLogo [19]. In each run, the protocol and the iterations were run for 10 cy-
cles. Even though our solution using resistance equations is not guaranteed to
converge, the results are very promising because the algorithm seems to produce

6 The clock tick was chosen to be long enough for the agents to process and execute
a single iteration of the search algorithm.
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high-valued allocations (even though suboptimal) for many cases and always in
a short period of time.

9 Discussion and Future Work

We have presented the new problem of distributed winner determination in com-
binatorial auctions which is an instance of a distributed search problem and,
when selfish agents are assumed, is an instance of a distributed algorithmic
mechanism design problem. We presented and compared several algorithms for
solving the problem under various circumstances. Our results are summarized
in Table 1.

The complete algorithm performs a linear search to determine the optimal
winner. This algorithm works in the absence of a centralized auctioneer. However,
the running time will be of the order of total number of feasible allocations. This
is because, even though it is distributed, the agents do not execute in parallel. At
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Table 1. Algorithm Comparison

Algorithm Opti-
mal?

Agents Time Revenue
Split?

Always
Converges?

Complete
Search

Yes Coopera-
tive

Exponential No Yes

Hill Climbing No Coopera-
tive

Linear: O(|b|) No Yes

Partitioning No Coopera-
tive

Dependent on
partition size

No Yes

mMCP No Selfish Linear: O(|b|) Yes Yes
Equiresis-
tance

No Selfish Not defined Yes No

any given time only one agent is performing the computation. The hill climbing
algorithm on the other hand does not guarantee an optimal solution but performs
much faster. More tests need to be done in order to determine the expected
quality of the solution found by the hill climbing algorithm.

The partitioning based approach ignores the bids outside partitions. This re-
sults in sub-optimal solution if the ignored bids are part of the optimal solution.
One of the reasons our partitioning approach performed worse than hill-climbing
(fig. 5) is that the goods were randomly partitioned. One way to improve the
quality of solution in the general case would be to partition the strongly con-
nected goods together, i.e., try to put goods that have lot of common bids in one
partition. We intend to extend our work to create dynamic distributed partition-
ing algorithms that can tailor their partitioning strategy to the characteristics
of the set of bids under consideration.

The mMCP that we proposed is again similar to a greedy approach. It can
converge to a local maximum and is always guaranteed to converge. We are
currently testing it to see if we can predict what are the characteristics of the
solution that it converges to. We are also studying modifications of the algorithm
that force convergence to optimal as well as the tradeoffs associated with using
different step sizes and other shortcuts for faster convergence.

Our study of the applicability of the NET equations is preliminary. We note
that these equations can be applied only if agents’ know their neighbors’ Pcon

values—an unrealistic assumption in most cases. Another problem we face is the
fact that the algorithm does not always converge. We are studying possible ways
of either forcing convergence or determining a priori if the problem is one that
will converge. Still, we are attracted to the fact that the equi-resistance equa-
tions have been shown to model the behavior of humans. We believe that the
widespread adoption of a peer-to-peer agent-based marketplace requires agents
that behave as humans. That is, if a user notices his agent either gives up negoti-
ation too soon or is too aggressive in its negotiations then the user will likely not
use that system. We see the possibility of a whole research program dedicated to
building agents that negotiate, not necessarily optimally, but as humans would.

In summary, the problem of distributed winner determination in combinatorial
auctions is an important problem whose solution will enable the construction of
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sophisticated peer-to-peer marketplaces. It is also an interesting combination
of distributed computation and distributed algorithmic mechanism design. Our
algorithms and analysis are a first step towards the understanding of this problem
and its ramifications.

References

1. Rothkopf, M.H., Pekec, A., Harstad, R.M.: Computationally manageable combi-
national auctions. Management Science 44 (1998) 1131–1147

2. Sandholm, T.: An algorithm for winner determination in combinatorial auctions.
Artificial Intelligence 135 (2002) 1–54

3. Andersson, A., Tenhunen, M., Ygge, F.: Integer programming for combinatorial
auction winner determination. In: Proceedings of the Fourth International Confer-
ence on MultiAgent Systems, IEEE (2000) 39–46

4. Nisan, N.: Bidding and allocation in combinatorial auctions. In: Proceedings of the
ACM Conference on Electronic Commerce. (2000) 1–12

5. Zurel, E., Nisan, N.: An efficient approximate allocation algorithm for combina-
torial auctions. In: Proceedings of the ACM Conference on Electronic Commerce.
(2001)

6. Nisan, N., Ronen, A.: Algorithmic mechanism design. Games and Economic Be-
havior 35 (2001) 166–196

7. Feigenbaum, J., Shenker, S.: Distributed algorithmic mechanism design: Recent
results and future directions. In: Proceedings of the 6th International Workshop
on Discrete Algorithms and Methods for Mobile Computing and Communications,
ACM Press, New York (2002) 1–13

8. Hoos, H.H., Boutilier, C.: Solving combinatorial auctions using stochastic local
search. In: Proceedings of the Seventeenth National Conference on Artificial Intel-
ligence and Twelfth Conference on Innovative Applications of Artificial Intelligence,
AAAI Press / The MIT Press (2000) 22–29

9. Fujishima, Y., Leyton-Brown, K., Shoham, Y.: Taming the computational com-
plexity of combinatorial auctions: Optimal and approximate approaches. In: Pro-
ceedings of the Sixteenth International Joint Conference on Artificial Intelligence,
Morgan Kaufmann Publishers Inc. (1999) 548–553

10. Preist, C., Bartolini, C., Phillips, I.: Algorithm design for agents which participate
in multiple simultaneous auctions. In: Agent-Mediated Electronic Commerce III,
Current Issues in Agent-Based Electronic Commerce Systems (includes revised
papers from AMEC 2000 Workshop), Springer-Verlag (2001) 139–154

11. Preist, C., Byde, A., Bartolini, C.: Economic dynamics of agents in multiple auc-
tions. In: Proceedings of the fifth international conference on Autonomous agents,
ACM Press (2001) 545–551

12. Wellman, M.P.: Market-oriented programming: Some early lessons. In Clearwater,
S., ed.: Market-Based Control: A Paradigm for Distributed Resource Allocation.
World Scientific (1996)

13. de Vries, S., Vohra, R.V.: Combinatorial auctions: A survey. INFORMS Journal
on Computing 15 (2003) 284–309

14. Shehory, O., Kraus, S.: Methods for task allocation via agent coalition formation.
Artificial Intelligence 101 (1998) 165–200

15. Willer, D., ed.: Network Exchange Theory. Praeger Publishers, Westport CT (1999)



56 M.V. Narumanchi and J.M. Vidal

16. Kakade, S.M., Kearns, M., Ortiz, L.E., Pemantle, R., Suri, S.: Economic properties
of social networks. In Saul, L.K., Weiss, Y., Bottou, L., eds.: Advances in Neural
Information Processing Systems 17. MIT Press, Cambridge, MA (2005)

17. Rosenschein, J.S., Zlotkin, G.: Rules of Encounter. The MIT Press, Cambridge,
MA (1994)

18. Leyton-Brown, K., Pearson, M., Shoham, Y.: Towards a universal test suite for
combinatorial auction algorithms. In: Proceedings of the 2nd ACM conference on
Electronic commerce, ACM Press (2000) 66–76 http://cats.stanford.edu.

19. Wilensky, U.: NetLogo: Center for connected learning and computer–based mod-
eling, Northwestern University. Evanston, IL (1999) http://ccl.northwestern.
edu/netlogo/.



Market-Based Allocation with Indivisible Bids	

L. Julian Schvartzman and Michael P. Wellman

University of Michigan
Computer Science & Engineering
Ann Arbor, MI 48109-2121 USA

{lschvart, wellman}@umich.edu

Abstract. We study multi-unit double auctions accepting bids with indivisibility
constraints. We propose different price-quote policies and study their influence on
the efficiency of market-based allocation. Using a reconfigurable manufacturing
scenario where agents trade large quantities of multiple goods, we demonstrate
potential benefits of supporting indivisibility constraints in bidding. These bene-
fits are highly sensitive to the form of price quote provided, indicating interesting
tradeoffs in communication and allocation efficiency.

1 Introduction

Consider a scenario with N manufacturing facilities with capabilities to produce vari-
ous industrial parts. The facilities are controlled by different agents (e.g, firms, or profit-
center divisions within the same large firm), and may vary in capacity, fixed and variable
costs for producing the different part types, time for reconfiguring to switch between
parts, transportation costs, and perhaps other factors. Each facility also has a set of cus-
tomer orders, each representing a promise to pay a fixed amount contingent on delivery
of a specified quantity of a particular type of part in the current period.

Since the facilities face heterogeneous cost structures, they stand to achieve signifi-
cant gains in efficiency by exchanging orders among themselves. We can formulate the
order allocation problem as a global optimization, but of course the agents may not have
the appropriate incentives to reveal their private information about costs and orders, or
comply with the resulting order exchanges. Economic mechanisms such as combina-
torial auctions [1] can address these incentives problems, and provide an elegant solu-
tion when in fact they can be instituted. However, there are several organizational and
computational impediments to holding large-scale (measured in numbers of goods and
agents, and units per good) two-sided combinatorial auctions, and these are as yet un-
common in practice. It is substantially simpler to deploy individual two-sided multi-unit
auctions for each of several goods, and these more ad hoc markets can address the allo-
cation problem to a useful degree. For example, idealized models of such configurations
as general-equilibrium systems demonstrate the potential of computational markets to
achieve efficient allocations in convex, competitive environments [2,3].
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However, realistic versions of this scenario vary from the idealization in several
ways.1 One particularly important characteristic of this application domain is noncon-
vexity in preferences and production technology, as manifest (for example) in fixed
costs, reconfiguration switching costs, and preset order sizes. The most straightforward
multi-unit auction mechanisms assume divisibility of offers: an agent willing to buy q
units at some price would also be willing to accept q′ ≤ q units at that price. This as-
sumption will not generally hold given nonconvex preferences and costs, and therefore
agents with these characteristics may be hesitant to bid at all absent some condition that
its offer be accepted in whole or not at all.

We investigate the design of multi-unit auctions accommodating such indivisibility
constraints. Our focus is on how such auctions can be operated in a computationally
efficient manner, and on the auctions’ price quote policies for revealing information to
agents to guide their bidding. We evaluate our designs experimentally, employing a ver-
sion of the manufacturing scenario sketched above. Our main finding is that supporting
indivisibility constraints can in fact improve the quality of global allocations achieved
through trading, but that this improvement does depend pivotally on the form of the
price quote. In the full version of this paper we also show how the computational costs
of optimizing bid matching and producing meaningful quotes can be amortized over the
auction’s operation, calculated incrementally throughout the dynamic bidding process.

2 Auction Mechanisms

We consider two-sided auctions for multiple units of a single good. The auctions clear
periodically at predefined intervals, and thus implement a call market. We distinguish
two major versions of this auction, differing in their treatment of offer quantities. In
the first (called “standard” for purposes of this paper), quantities appearing in bids are
assumed divisible, and so the bidder effectively expresses a willingness to trade any
amount up to the specified quantity at the associated unit price. In the second, offers are
considered “all-or-none” (AON), and so agents explicitly specify the payment at which
they would be willing to trade any acceptable discrete quantity. We refer to this version
as the “AON” auction henceforth.

In both auctions, agents may submit bid schedules, indicating the prices offered to
trade various quantities (with negative quantities indicating amounts offered to sell).
The points on the schedule are exclusive (i.e., treated as “XOR” [4]), in that the result-
ing allocation will employ at most one of them. For divisible (standard) bids, the prices
are per unit, and consistency requires that unit prices be nonincreasing in quantity. For
indivisible (AON) bids, the prices represent total payments for the associated quantity,
and these totals (not the per-unit payments) must be nondecreasing in quantity. Assum-
ing only free disposal, with AON bids, agents can express arbitrary valuations for the
good [5,4]. Standard divisible bids can express only convex valuations.

Operation of the standard auction is relatively simple, as described, for example, by
Wurman et al. [6]. Mechanisms resembling the AON auction have been described in the

1 Our work does not address all important variations from the ideal. In particular, we maintain
the assumption of competitiveness, modeling our agents essentially as price takers.
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literature, and employed in practice.2 For example, van Hoesel and Müller [7] consider
the special case of combinatorial auctions where all goods are the same, and point out
that optimal allocations can be found by dynamic programming. This corresponds to a
one-sided, one-shot version of the AON auction. Kothari et al. [8] present a one-sided,
one-shot auction that supports AON bidding in the form of a minimum trade quantity,
but then assumes divisibility for quantities beyond this minimum. Several other authors
have considered indivisibility constraints in multi-unit auctions [9,10,5], and have also
identified the connection to knapsack methods for matching bids. We describe details of
the allocation algorithm, as well as other AON auction policies, in the sections below.

2.1 Bids Matching Algorithm

As pointed out most explicitly by Kelly [5], optimal winner determination for single-
good, two-sided, multi-unit auctions with indivisible XOR bids (i.e., our AON auctions)
reduces to the Multiple Choice Knapsack Problem (MCKP) [10]. Here we present a
formulation of MCKP specialized (slightly) to the auction setting.

Consider a set of N agents, with agent i submitting bid Bi. Each Bi is comprised of mi

bid points, (pi j,qi j), specifying a payment pi j offered to exchange quantity qi j. Each
bid includes a dummy point (0,0). Offers to buy are expressed as positive payment-
quantity pairs, and offers to sell as negative payment-quantity pairs. Because the stan-
dard MCKP requires positive coefficients, we define transformed bid points (p′i j,q

′
i j) =

(pi j + p̄i,qi j + q̄i), where p̄i ≡ −min j∈Bi pi j, and q̄i ≡ −min j∈Bi qi j. (Note that this
transformation affects only bids with sell points; for buy-only bids, q̄i = p̄i = 0.) We
then define the knapsack capacity c ≡ ∑i q̄i. Conceptually, the capacity c is equivalent
to the total number of units that are offered for sale. We denote by C the maximum
number of units that could be traded. In order to ensure that C is bounded, we assume
agents have a limited ability to take short positions in the goods traded. The MCKP is
formulated as:

maximize:
N

∑
i=1

mi

∑
j=1

p′i jxi j

subject to:
N

∑
i=1

mi

∑
j=1

q′i jxi j ≤ c,

mi

∑
j=1

xi j = 1, i ∈ A,xi j ∈ {0,1}.

We assume free disposal of units, reflected in allowing the auction to match bids
with more sales than purchases. Excess units are allocated arbitrarily among sellers.
Note that formulating and implementing the same problem without the assumption of
free disposal is straightforward.

2 Our understanding is that practical trading mechanisms admitting AON bids typically handle
them in an ad hoc manner. For example, such bids might be matched in a greedy manner, as in
common electronic stock trading systems, which just pass over AON bids if the entire quantity
cannot be fulfilled.
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Solving MCKP is NP-hard, which is shown by reduction to a basic knapsack prob-
lem [10] (p. 318). Using dynamic programming, however, the problem can be solved
in pseudopolynomial time [11]. Let Zl(d) be the value of the optimal solution to the
MCKP defined to include only the first l agents, 1≤ l ≤ N, and with restricted capacity
0≤ d ≤ c. We further define Z0(d) = 0 for 0≤ d ≤ c, and Zl(d) =−∞ for d < 0.

We can characterize Zl(d), 1≤ l ≤ N, 0≤ d ≤ c, using the following recursion:

Zl(d) = max
1≤ j≤ml

Zl−1(d−q′l j)+ p′l j. (1)

The optimal solution is obtained when l = N and d = c. Given N bids of maximum
size m = maxi mi, the running time to solve MCKP using dynamic programming is
O(mNc) [10]. If agents choose to submit full demand curves (i.e., with up to C bundles
each), the running time becomes O(NC2).

Many different methods exist to solve MCKP, including a number of branch-and-
bound techniques and hybrid algorithms (see Kellerer et al. [10] for an extensive re-
view). Our implementation is customized for the dynamic auction context, which may
call for repeated solution of the MCKP for small changes in the set of bids. We therefore
developed an incremental version of the clearing algorithm, designed to minimize the
average solution time over a sequence of auction operations. Space constraints preclude
a description of the algorithm here; see the full paper for details.

2.2 Clearing and Pricing

Clearing the auction is the process of identifying the subset of bids that match and pro-
duce the highest possible surplus. The outcome of a clear operation is to determine the
deals resulting from this matching, and removing the matched bids from the order book.
Given our incremental algorithm, most of the work is performed when bids are inserted
into the order book. Once this is done, identifying the match takes constant time. Ex-
tracting the deals takes time linear in the number N′ of bids matched. Modifying the
order book to include only unmatched bids requires N′ deletions or (N−N′) insertions.

Matching bids with indivisibility constraints and three or more agents requires non-
uniform pricing [12]. It is easy to understand the impossibility of having uniform pricing
through an example. Consider the bids in Table 1. In such example, the auction would
match all four bids. However, it is impossible to make all buyers pay at most what they
offered while making all sellers receive at least what they requested with a single price.

Table 1. Matching these bids requires non-uniform prices

(13 @ 26) buy 13 units at $2 each
(2 @ 1) buy 2 units at $0.5 each

(-11 @ -11) sell 11 units at $1 each
(-4 @ -10) sell 4 units at $2.5 each

There are many ways to determine non-uniform prices consistent with a given set of
bids and an allocation. For a fixed allocation of goods, monetary transfers do not affect
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overall efficiency. Therefore, since we are not addressing strategic issues in this work,
the choice is not pivotal for our experimental analysis. Nevertheless, to fully specify the
mechanism one must identify a pricing rule. Ours starts with Vickrey prices and adjusts
them proportionally to ensure budget balance.3 The Vickrey calculation requires that
we compute the total surplus with each agent’s bid excluded, for which O(N′) deletion
and insertion operations need to be performed.

2.3 Quoting

After each bid, the auction issues a price quote, providing to the agents some informa-
tion regarding the state of the order book, intended as a guide to future bidding. In the
standard auction, the quote comprises a BID-ASK pair, representing the prices at which
an agent could successfully trade at least one unit. The BID quote defines the price at
which an agent could sell one unit, and the ASK quote the corresponding price to buy.
For standard (divisible-bid) auctions, we can incrementally maintain the order book so
that price quotes can be provided in constant time once the bids are inserted [6].

For the AON auction, it is not immediately apparent how the auction should define
its price quotes. We identified four candidate quoting policies, described here and com-
pared experimentally in Section 4 below.

Standard Quote. One possibility is for the AON auction to provide a “standard” quote,
defined as the BID-ASK pair reflecting the order book interpreted as if the bids were di-
visible. Constructing this interpretation requires some care, since simply treating each
bid point as a divisible offer may violate the standard auction’s consistency condition
requiring that quantity be nonincreasing in unit price. To ensure this monotonicity, we
transform each bid Bi by first sorting the bid points (pi j,qi j) (not including the dummy
point with pi j = qi j = 0) in decreasing order of unit price. We then traverse the list,
translating each to a unit-price bid point, skipping any that would violate the mono-
tonicity condition with respect to those already seen. These translated bids can then be
handled by the order book and quoting algorithm of the standard auction.

Marginal Unit Quote. A second quote candidate attempts to maintain the interpreta-
tion of the standard quote as a price threshold sufficient to trade one unit, but respecting
the indivisibility constraints of AON bids. Calculating this quote requires solving the
MCKP for the bids in the order book. Under this interpretation, the ASK quote is always
defined as long as there is any sell offer in the order book. The same is not true for the
BID quote, however, because it could be the case that no existing offer or combination of
offers can be satisfied by contributing a single additional unit. The marginal unit quote
takes the same form as the standard quote, but provides more conservative values. In-
deed, it is even possible (and consistent) that the ASK price quoted be lower than the
BID price, something that cannot happen in the divisible case. It would also be possible
to define this quote with any particular quantity defined as “marginal” (e.g., ten units

3 Intuitively, this should tend toward reducing the incentive to behave strategically, though we
know this is not strictly true. Of course, no budget-balanced mechanism can achieve this ex-
actly. A serious treatment of strategic concerns in this context is a subject of future work.
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instead of one). Given our incremental computation (detailed in the full version of the
paper), these quotes can be extracted from the order book in constant time.

Anonymous Full Schedule Quote. The third quote we consider provides to all agents
a full schedule of payments that would be required to exchange any feasible quantity
given the current state of the order book. This can be viewed as a collection of marginal
unit quotes, one for each feasible quantity. The quote is anonymous because the same
values are provided to every agent. Note that only relevant payment-quantity pairs need
to be communicated to an agent: for a given payment, a quote for the minimum number
of units the agent needs to sell to get such payment, and the maximum number of units
the agent can buy with such payment. As for the marginal unit quote, the schedule may
not be monotone: the unit price to exchange various quantities may be increasing or
decreasing or mixed along the schedule.

Also like the marginal unit quote, the full schedule quote can be extracted directly
from the order book given our incremental computation scheme, though of course ex-
tracting and communicating it will take time proportional to its size, O(C).

Non-Anonymous Full Schedule Quote. The final quote we consider is similar to the
previous one, but each agent is provided with personalized values based on its existing
bid. More specifically, this quote provides agent i the schedule of payments calculated
by excluding from the order book the bid sent by i.

Quote Discussion. The four candidate quotes present distinct tradeoffs. The standard
and marginal-unit quotes are compact, but the more accurate one may be excessively
conservative when used as a guide for quantities greater than a single unit. The full
schedule quotes provide high-fidelity information, but may be too large to be reasonably
communicated in some applications.

We explore the implications of the various quote policies in our experiments be-
low. (Results for non-anonymous quotes are pending from ongoing experiments, not
reported here.) Of course, the worth of a quote is intimately tied to how the agents use
this information in their bidding. We discuss our assumptions about agent behavior in
Section 4.2 below.

2.4 Implementation

We implemented the AON auction as an extension of AB3D, a configurable auction
and market-game server developed at the University of Michigan [13]. AB3D provides
a flexible bid-processing architecture, with a rule-based scripting language to specify
particular auction policies and temporal control structure. The standard call market was
already supported by AB3D. To handle indivisible bidding, we added a new bid lan-
guage specifying quantity-payment schedules, and new matching, pricing, and quoting
modules implementing the algorithms and policies described above. In particular, we
implemented all four quoting candidates as selectable options. Parameters in the auction
script determine whether to allow AON bids, and if so, which of the available quoting
and pricing policies to employ.
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3 Manufacturing Domain

We evaluate the AON auction in a market-based allocation problem based on the man-
ufacturing scenario sketched in the Introduction. The setting comprises a set of N man-
ufacturing modules, defined as arrangements of manufacturing machines, with capabil-
ities for producing a variety of parts. Each module is controlled by an agent, whose
objective is to maximize profit by operating the module to produce parts fulfilling cus-
tomer orders over an L-day production period. In our market-based model, agents may
increase their individual and collective profit by exchanging orders among themselves,
thus exploiting their comparative advantages and configuration decisions.

We provide a full specification of the model below, describing the goods traded,
utility and cost functions of the manufacturing modules, and the market configuration.
Specific parameter settings for the model, and trading policies implemented by agents
in our simulations, are described in Section 4.

3.1 Goods Traded

The core allocation problem in this domain is deciding which manufacturer will produce
what quantity of each of M types of parts in the current period. The total quantity
demanded of part type r is Dr, and initially each agent is given orders for some share of
that demand. Producing part r entitles the manufacturer to a fixed income of Ir per unit,
up to the number of units for which it holds orders.

The purpose of the market is to enable trading of orders among manufacturing mod-
ules. The goods traded are the rights to produce parts for orders. A unit of good r,
therefore, entitles the holder to produce a unit of the corresponding part and receive the
corresponding payment Ir from the customer.

Note that the parameter Dr bounds the maximum quantity of good r that can be
exchanged at one time, and thus plays the role of C in the definition of the AON auction.

3.2 Agent Objectives

Agents aim to maximize profit, defined as

income−production costs+ trading cash flow.

Income is simply the total payment for producing parts. Trading cash flow represents
the balance of payments from trading orders with other agents. Production costs include
several components, depending on the quantity and types of parts produced. These are
defined by a set of agent-specific parameters:

– FCi: Fixed cost, a one-time payment if module i produces one or more parts.
– LCi: Labor cost, paid for every day in which the module is in production.
– VCi,r: Variable cost, be paid for each unit of part r that gets produced.
– CFi: Set of possible configurations. Each manufacturing configuration provides dis-

tinct production capabilities. Only one configuration can be used in any given day.
For each configuration f ∈CFi, each module has:
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• PCf ,r: Production capacity per part type, the quantity of parts of type r that the
module produces per day.

• RCf : Reconfiguration cost to be paid if the configuration is used.
• RTf : Reconfiguration time (in days) that it takes to set up configuration f , dur-

ing which no part can be produced.

The configuration capacities and times, along with the period length L, define the
production possibilities for module i. The various cost parameters define the total cost
for any feasible production plan.

Although complicated, the foregoing determines well-defined optimization problems
for the agent:

– Determining an optimal production plan given holdings of goods r.
– Determining optimal demand for goods r given current holdings and market prices.

3.3 Market Configuration

The overall market system comprises the agents representing manufacturing modules,
plus one auction for each part type. We simulate an instance of this setup by gener-
ating parameter values from prespecified probability distributions, and communicating
these values to the respective agents. Each agent is initially allocated customer orders
corresponding to equal shares, Dr/N, of the overall demand for each part r.

The simulations are implemented using our configurable market game server, AB3D
[13]. Each game instance lasts twenty minutes, with each auction clearing periodically
every 48 seconds. The auctions are staggered, so that the initial clears occur at multiples
of 48/Mseconds.

The agents operate asynchronously, submitting bids to the auctions according to the
policy described in Section 4.2. Agents can request price quotes reflecting the latest
auction state, and retrieve notices of any transactions from prior bids.

At the end of a game instance, the server calculates final holdings based on cumula-
tive transactions, and determines a score for each agent. The score depends on an agent’s
production plan given its total available orders, which entails solving an optimization
problem for each agent. AB3D solves these using a commercial optimization package
(AMPL/CPLEX), given an integer linear programming (ILP) formulation specified as
part of the game description.

The overall value of the resulting allocation is simply the sum of the scores over
the N agents. For comparison, we can also calculate (offline if necessary) the global
optimum of the system without trading, assuming a central planner that can allocate
orders across manufacturing modules.

4 Experiments

We ran a set of 58 paired trials with both standard and AON auctions. For AON auctions,
we tested standard, marginal, and full schedule quotes. The following sections describe
the specific problem instance we chose for our manufacturing scenario, the behavior of
the agents, and the results obtained.
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4.1 Manufacturing Problem Setting

For each of the 58 trials run, we obtained a new set of randomly chosen parameter val-
ues, as specified in Table 2. Each paired trial used the same set of parameter values, and
compared standard auctions and AON auctions with the quoting alternatives discussed.

Table 2. Settings of the manufacturing scenario used for our experiments. Parameters specifying
a range are drawn from a uniform distribution. (*) parameter specifies total for all parts in a
configuration, each part getting a random proportion.

Parameter Values

General # of agents (N) 4
# of parts (M) 4

Public Ir [1000, 2000]
information Dr [2000, 6000]

L [250, 300]
Private FCi [300000, 400000]

information LCi [15000, 20000]
for agent VCi [250,350]

i |CFi| 2
For PCf [20,60] (*)
each RCf [400000, 800000]

f ∈CFi RTf [5,15]

4.2 Agent Bidding

Agents bid in a set of auctions G, each corresponding to a different good r. Each agent
follows an incremental bidding approach similar to the one described by Cheng and
Wellman [2]. The main loop that controls an agent’s behavior is as follows.

1: repeat
2: Get price quotes.
3: Get transactions (i.e., matching bids).
4: for each auction g ∈G do
5: Select a new point to be added to the bid in g.
6: Fix inconsistencies in bid.4

7: Submit updated bid to g.
8: end for
9: until Timeout {allocation process is over}

The results described in Section 4.4 were obtained by using the same agent structure,
with some variations in terms of selection of new bidding points which are explained
below.

4 Make smallest possible changes to the old points in the bid in order to maintain divisible prices
nonincreasing in quantity and indivisible payments nondecreasing in quantity.
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4.3 Selection of New Bidding Points

In each iteration a of the main loop, an agent updates its bid for good in auction g
with one new point (pg,a,qg,a), taking into account current holdings and assuming other
goods (not in auction g) could be freely bought or sold at the most recent quote. We used
two different methods for picking incremental points, one for dealing with divisible bids
and another for indivisible ones.

DIVISIBLE: For divisible bids, an agent selects a new bidding point for the good in
auction g by picking a price pg,a and calculating the quantity qg,a the agent would be
willing to buy or sell at such price in order to maximize its profit. Calculation is done
using an ILP model that encodes the agent’s utility function as explained in Section 3.2.
Prices pg,a are selected in the following arbitrary order:

1. pg,a = BID

2. pg,a = ASK

3. If the bid in g already contains prices for 1 and 2 above, pg,a is selected from a
normal distribution N(µ ,1),

µ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(hb + ASK)/2 if qa−1 > 0∨ (qa−1 = 0∧ pr < .25)

(ls+ BID)/2 if qa−1 < 0∨ (qa−1 = 0∧ pr < .5)

lb if (qa−1 = 0∧ pr < .75)

hs otherwise

where hb (hs) and lb (ls) are the highest buy (sell) and lowest buy (sell) offers
already in the bid and pr is a random value uniformly distributed between 0 and 1.

(Note that BID and ASK refer to the most recent quote obtained by the agent.)
The basic idea behind the approach described above is to help agents find feasible

trades by gradually making them place their highest buy and their lowest sell offer.
We empirically tested other alternatives to ensure that our comparison of divisible ver-
sus indivisible bidding was not biased by an unreasonable point-selection approach.
Specifically, we compared the procedure described with a random selection of points,
and also with another in which prices are picked by finding the maximum possible gap
between any two consecutive pairs of (sorted) prices already in the bid and selecting
their average. Our results indicated that the approach chosen provided the best average
performance among the alternatives we evaluated.

INDIVISIBLE: For indivisible bidding, the agent selects a new bidding point for
the good in auction g by picking a quantity qg,a. The payment pg,a is given by the
maximum (minimum) value at which the agent is willing to buy (sell) qg,a units, which
is calculated using an ILP model that encodes the agent’s utility function as explained
in Section 3.2. Quantities qg,a are selected in the following order:

1. qg,a =−Hg,a (sell all holdings available in iteration a)
2. qg,a = Dg−Hg,a (buy all available items, i.e., demand minus holdings)
3. qg,a = random value uniformly distributed in the range [−Hg,a,Dg−Hg,a] (exclud-

ing 0)
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4. If the bid already contains quantities for 1, 2, and 3 above:

qg,a =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−Hg,a with probability .1

Dg−Hg,a with probability .1

average between any two

consecutive (sorted) quantities

that are further apart with probability .8

The method described gradually fills the largest gaps in the bid being constructed,
and “refreshes” each extreme occasionally with a 0.1 probability.

4.4 Results

The average performance relative to a global optimal allocation (i.e., assuming a cen-
tral planner) as calculated from our 58 trials is given in Table 3. Results show that AON
auctions quoting an anonymous full schedule provided the best performance, and that
AON auctions using either a standard or marginal unit quote performed worse than stan-
dard auctions with divisible bids. Using AON auctions with standard quotes provided
the worst average performance, although the differences with AON auctions quoting
marginal units are not statistically significant at reasonable levels.

Table 3. Results of 58 paired trials calculated as average performance in terms of global optimal.
Differences between 1 and 2 are significant at the 10−7 level, 2 and 3 at the .03 level, but 3 and 4
only at the 0.07 level.

# Auction Quote Average performance

1 AON Full schedule 91.3 %
2 Standard Standard 79.2%
3 AON Marginal unit 70.7 %
4 AON Standard 61.7%

We are not suggesting based on this particular experiment that the differences shown
in Table 3 are an indicator of the differences to be found under any possible parameter
configuration of our scenario or other settings. Before we ran the systematic paired
tests described above, we informally experimented with other parameter settings. Even
though we observed that AON auctions quoting full schedules always provided the best
average performance, in several settings the differences detected were not as stark.

4.5 Influence of Quoting

Quoting marginal prices with standard auctions makes sense from two perspectives.
First, it provides an accurate value for marginal units in order for agents to construct
their bids. Second, it provides a lower (upper) bound on both the unit price and total
payment to be paid (received) when bidding to buy (sell) an arbitrary number of units.
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On the contrary, marginal values for AON auctions do not contain similarly valuable
information. By assuming divisibility with AON auctions, the marginal value provided
is neither accurate for the marginal nor a bound on the price for additional units. In
this case, the quote provides a very loose approximation of value. Similarly, if we took
into consideration indivisibility constraints when quoting marginal values with AON
auctions, the result would be such very conservative. It is often undefined for the BID

(we need an agent or combination of them intending to buy a single unit), and the ASK

can often be excessively high (when the auction matches bids with sell quantities much
larger than the marginal). Moreover, this quote provides no information about the unit
price beyond the marginal, showing only that the total payment for more units will be
at least the price for a single unit.

The effects described above were confirmed in part by measurements applied to our
simulation results. We define a trade as desired (A) with respect to agent i, if, once ex-
ecuted, it increases or maintains the profit (i.e., income minus costs plus cashflow) of i
assuming that no further trades occur. We identified three possible reasons for agent i
to engage in undesired trading: outdated information (B1), misleading non-anonymous
quotes (B2), or misleading anonymous quotes (B3). A bid can contain outdated infor-
mation because its points were calculated incrementally or due to the asynchronous
nature of the bidding process. Outdated information (B1) thus refers to the case in
which i engaged in a trade that it would have rejected had it reevaluated its bid using
the most up-to-date information (i.e., current holdings and quotes). Misleading non-
anonymous (B2) or anonymous (B3) quotes are those that made i believe that it could
buy or sell goods at the quote, when that was actually not possible. Non-anonymous
quotes are those calculated by excluding from the order book the bid sent by agent i.
Finally, every transaction that decreased utility and cannot be otherwise explained must
have occurred because of a dependency on other auctions (C). Such dependencies exist
because agents construct their bids in an auction assuming they could trade in other auc-
tions at the quote. Since communication is asynchronous and auctions clear at different
times, some intermediate decreases in utility are normal and expected.

Suppose we had T transactions, and transaction t occurred in auction g for quantity
qt and payment pt . We perform two different optimizations for each agent i:

– R∗(H) is the profit achieved by i when calculating its optimal production plan based
on holdings H, assuming that i cannot trade further.

– P∗(H,Q) is the highest payment that i is willing to offer to trade quantity qt in
auction g, assuming it holds goods H and that it could freely trade goods in auctions
other than g at the prices given by quotes Q.

We further define Qi and Q as the most up-to-date non-anonymous and anonymous
quotes, respectively. Holdings Ht are the goods held by i in all auctions right after t
occurred; holdings H0 are initial endowments; holdings Ht′i and Ht′are the goods held
right after t and an hypothetical clear of all auctions other than g occurred, assuming
that i bid to achieve optimal holdings as calculated for P∗(Ht−1,Qi) and P∗(Ht−1,Q),
respectively; and p′t is the lowest hypothetical payment that i could have bid in order to
trade qt in g. Negative coefficients for payments and quantities are used for sell offers.
Given these definitions, we can classify transaction t for agent i as follows.
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• (A) Desired If R(Ht−1)≤ R(Ht)
• (B1) Occurred due to outdated information If P∗(Ht−1,Qi) < p′t
• (B2) Occurred due to a misleading non-anonymous quote If R(Ht′i ) < R(Ht−1)
• (B3) Occurred due to a misleading anonymous quote If R(Ht′) < R(Ht−1)
• (C) Necessary due to auction dependencies If t /∈ A,B1,B2,B3,C

Using the same data obtained for the experiments reported in Table 3, we measured
the percentage of transactions in (A), (B1), (B2), (B3), or (C) for the different quot-
ing mechanisms we tested with AON auctions. The results are shown in Table 4. Note
that the Full Schedule quote was the least misleading. Had we used a non-anonymous
full schedule quote for decision making, we would have entirely avoided (by defini-
tion) misleading quotes, potentially increasing the overall performance even further.
The marginal unit and standard quotes were similarly misleading, providing compa-
rable results regardless of quote anonymity. Thus, personalizing these two quotes for
decision making does not seem likely to help. Marginal unit quotes appeared to pro-
vide a relatively high percentage of desired trades (but poor overall results), which is
somewhat expected given such a highly conservative quote.

Table 4. Analysis of transactions in AON auctions. (*) Offline simulation only.

# Quoting (A) (B1) (B2)* (B3) (C)

1 Full schedule 62.1% 20.7% 0% 17.8% 16.1%
2 Marginal unit 64.8% 17.6% 26.2% 25.2% 3.5%
3 Standard 57.4% 22.8% 24.8% 23.1% 7.1%

5 Discussion and Future Work

Our study of the AON auction provides evidence for the viability and potential benefits
of accounting for indivisibility constraints in market-based allocation, without resorting
to fully combinatorial auction designs. Whether one should adopt an AON auction or
standard divisible auction depends on the specific setting. Relevant factors include:

1. Expressivity. Divisible bids allow expressing only convex valuations, whereas indi-
visible ones do not have such limitation. Would agents with nonconvex valuations
refrain from participating in auctions with mandatory divisibility?

2. Undesired trades. If agents with nonconvex valuations do participate in a divisible
auction, they risk loss-producing transactions. How much they suffer as a result
depends on the degree of nonconvexity.

3. Computation. Our incremental algorithms provide a relatively efficient way to op-
erate AON auctions, which should be fast enough for several practical applications.
Standard auctions, however, are still faster to operate, and more predictable since
performance is less dependent on the number of units offered for sale.

4. Quote communication. Our experiments showed that the level of detail in price-
quote information can play an important role in overall efficiency, and in particular
that simple marginal quotes were not enough for AON auctions to improve on the
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performance of a standard auction. Even though much work remains to be done in
this area, it is obvious that the communication burden of the quote used should be
evaluated when choosing an auction mechanism over the other.

Further work will refine our comparisons and evaluate additional quoting policies.
For example, it would be interesting to measure the potential benefit of providing full
schedule quotes in standard auctions, as we have for AON auctions. It would be particu-
larly beneficial to identify intermediate quoting policies for AON auctions that provide
much of the benefit of full schedule quotes without the full expense. Understanding this
tradeoff remains an important goal. Finally, we are interested in exploring the strategic
bidding issues posed by indivisibility constraints as well as alternative quoting policies.
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Abstract. Vickrey-Clarke-Groves (VCG) mechanisms are a well-known
framework for finding a solution to a distributed optimization problem
in systems of self-interested agents. VCG mechanisms have received wide
attention in the AI community because they are efficient and strategy-
proof; a special case of the Groves family of mechanisms, VCG mech-
anisms are the only direct-revelation mechanisms that are allocatively
efficient and strategy-proof. Unfortunately, VCG mechanisms are only
weakly budget-balanced.

We consider self-interested agents in a network flow domain, and
show that in this domain, it is possible to design a mechanism that is
both allocatively-efficient and almost completely budget-balanced. This
is done by choosing a mechanism that is not strategy-proof but rather
strategy-resistant. Instead of using the VCG mechanism, we propose a
mechanism in which finding the most beneficial manipulation is an NP-
complete problem, and the payments from the agents to the mechanism
may be minimized as much as desired. This way, the mechanism is virtu-
ally strongly budget-balanced: for any ε > 0, we find a mechanism that
is ε-budget-balanced.

1 Introduction

Mechanisms face the problem of finding a system-wide solution to an optimiza-
tion problem based on private information given by self-interested agents. As
mechanism designers, we want to build a mechanism that would encourage agents
to report their information truthfully, so that we can implement a desirable so-
cial choice function and maximize social welfare. A well-known solution to this
problem in the case of quasi-linear preferences is that of Groves mechanisms. A
special case of the Groves family of mechanisms are VCG mechanisms, which
are budget-balanced, allocatively-efficient and strategy-proof.

Thus, in many cases, by using VCG we get a mechanism that operates with
no outside subsidy (weakly budget-balanced) and maximizes the agents’ utility.
We maximize the agents’ utility by choosing the outcome that maximizes the
total utility according to the agents’ reported types. Since VCG mechanisms
are strategy-proof, the agents report their true preferences, and the mechanism
maximizes their true utility. Also, VCG mechanisms are individually rational.
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Although in VCG mechanisms the agents pay the mechanism, they never pay
more than they value the chosen outcome; the agents always have positive utility,
and voluntarily participate.

A significant disadvantage of VCG mechanisms is that they are only weakly
budget-balanced. We would in principle prefer a strongly budget-balanced mech-
anism, where the total sum of payments to the mechanism is zero:

∑
i ti(θ) = 0.

Impossibility results ([1] and [2]) show that in a quasi-linear environment, it is
impossible to achieve a mechanism that is strategy-proof, allocatively-efficient,
and strongly budget-balanced. Given this fact, we are faced with a grim future.
Giving up allocation-efficiency means we would no longer maximize the sum
of agents’ utilities, which was our goal in the first place. Giving up strategy-
proofness means agents may have an incentive to try and manipulate the mech-
anism by not reporting their true preferences, which may lead us to a sub-optimal
result. However, without sacrificing one of the two, we will not be able to achieve
strong budget-balance.

We propose addressing this problem by relaxing the strategy-proof require-
ment, replacing it with strategy-resistance. A mechanism is strategy-proof if the
dominant strategy of each agent is to reveal its true type to the mechanism.
Strategy-resistance only requires that even if an agent is given the reported
types of the other agents, it still faces a computationally intractable problem to
solve if it wishes to find a beneficial manipulation (i.e., report a false type to
the mechanism in order to gain higher utility). We here consider a scenario in
which it is an NP-hard problem for an agent to find a useful manipulation. NP-
hardness is a worst case notion of computational difficulty, in the sense that it
only indicates that a certain problem has some hard instances. A stronger notion
of strategy-resistance could also require the manipulation problem to have no
approximation methods, or require it to be in some harder computational com-
plexity class. Also, a stronger sense of strategy resistance could require it to be
hard to find any beneficial manipulation, not just the optimal manipulation. This
paper constitutes a first step in establishing the notion of strategy-resistance.

In this paper we consider the network flow domain. In this domain, the edges
of a network flow belong to several self-interested agents. Each agent reports its
edges to the mechanism. The mechanism is then required to choose a flow from
the source vertex to the target vertex. Agents gain utility from flow units on
their edges. A reasonable choice for the mechanism would be selecting the flow
that maximizes the total flow on all of the agents’ edges. In the case of a layer
graph, this can easily be done by finding the maximal flow, and we get a simple
and tractable algorithm for implementing the mechanism, assuming each of the
agents truthfully reports its subset of edges. However, in some cases it is beneficial
for these agents to hide some of their edges. A VCG mechanism to overcome this
problem would be strategy-proof, but only weakly budget-balanced.

We show that in the domain of network flow, it is possible to achieve a mecha-
nism that is strategy-resistant (and thus agents have an incentive to be truthful),
efficient when agents are truthful, and as budget-balanced as we want it to be
(i.e., we can minimize the sum of agent payments,

∑
i ti(θ′), as much as we
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want). A mechanism is ε-budget-balanced if 0 ≤ ∑i ti(θ′) < ε. We analyze a
general multiagent flow problem, and show that for every ε > 0 we can create a
strategy-resistant, allocatively efficient, and ε-budget-balanced mechanism. This
result indicates that at least for some domains, it is possible to use the fact that
agents have computational limitations and are not unboundedly rational, so as
to construct mechanisms with beneficial properties.

2 Related Work

The main focus of research on bounded-rational mechanism design is on the prob-
lems that computational complexity poses for mechanism designers. Relatively
little research has been dedicated to using the bounded-rationality of realistic
agents to build better mechanisms. This approach was taken in [3] (building on
the work in [4]), which used computational complexity to show that common
voting protocols are hard to manipulate. A similar approach was taken in [5],
where coalition games were analyzed. It was shown there that manipulating a
marginal-contribution based value distribution scheme, similar to the standard
solution of the Shapley value [6], is an NP-complete problem. [7] considered
coalitions among computationally bounded agents. It suggested some bounded
rational concepts for coalition games, and indicated that computational complex-
ity considerations may lead us to extend the set of acceptable stable solutions.
[8] analyzed VCG auctions, and showed that manipulating VCG auctions us-
ing false name bids is NP-hard; it also analyzed approximate VCG auctions. [9]
showed that using an approximation method to find the optimal allocation in
combinatorial auctions can lead to the loss of strategy-proofness.

3 Preliminaries

In this article, we propose an alternative to VCG mechanisms in quasi-linear
domains. In such domains, we have a set I of agents. The mechanism needs to
choose one of a set of possible alternatives K. Each agent reports a type θi ∈ Θi

to the mechanism. This type represents the agent’s preferences over the different
alternatives in K. Each agent has a different valuation of the mechanism’s chosen
alternative k ∈ K, vi(k, θi). The mechanism chooses the outcome according to a
choice rule k : Θ1× ...×ΘI → K. Each agent is also required to make a payment
pi to the mechanism. The mechanism chooses the payment of each agent accord-
ing to a payment rule ti : Θ1 × ΘI → IR. If the agents have quasi-linear utility
functions, then the agents have utility ui(k, pi, θi) = vi(k, θi)−pi. An agent might
not report its true type, but can choose a type to report to the mechanism. Thus,
agent i (Ai) reports a type θ′i = si(θi), according to its own strategy.

3.1 Groves and VCG Mechanisms

In Groves mechanisms, the mechanism’s choice rule given the reported types
θ′ = (θ′1, ..., θ′I) maximizes the sum of the agents’ utilities, according to their
reported types:



74 Y. Bachrach and J.S. Rosenschein

k∗(θ′) = arg max
k∈K

∑
i

vi(k, θ′i). (1)

The payment rule in Groves mechanisms is

ti(θ′) = hi(θ′−i)−
∑
j �=i

vj(k∗, θ′j) (2)

where hi : Θ−i → IR may be any function that only depends on the reported
types of agents other than i. Groves mechanisms are allocatively-efficient, and
maximize the total utility of the agents. They are also strategy-proof, and for
each agent the dominant strategy is to reveal its true type (or preferences) to
the mechanism, no matter what the other agents report. Groves mechanisms are
known to be the only direct revelation mechanisms that are allocatively-efficient
and strategy-proof. Another advantage of Groves mechanisms is that in many
cases they are weakly budget-balanced:

∑
i ti(θ) ≥ 0.

A special case of Groves mechanisms is that of the VCG mechanism, when

hi(θ′−i) =
∑
j �=i

vj(k∗
−i(θ

′
−i), θ

′
j). (3)

Under quite general settings, agents would voluntarily participate in VCG
mechanisms, and we say that under these conditions the mechanism is individual-
rational. The VCG mechanism also achieves weak budget-balance in quite gen-
eral settings.

3.2 Main Contribution of the Paper

We approach the problem of designing a mechanism for bounded rational agents
by building a mechanism for a distributed flow problem. We will demonstrate
that for this domain, we can find a mechanism that is allocatively-efficient, ε-
budget-balanced, and strategy-resistant. This means that if we assume the agents
are bounded-rational and would not try to manipulate the mechanism if such
manipulation is an NP-complete problem, they would all truthfully report their
preferences. Once the mechanism gets their true preferences, it chooses the out-
come that maximizes total utility of the agents. To achieve this truthfulness, the
mechanism requires side payments; however, the total sum of these payments
can be minimized as much as required. In other words, for every ε > 0 we can
build such a strategy-resistant, allocatively-efficient mechanism, that would also
be ε-budget-balanced.

We restrict ourselves to the case where maximizing the graph’s flow also
maximizes the agents’ total utility, since this allows us to choose a tractable
mechanism. However, although the mechanism itself performs a polynomial cal-
culation, finding the optimal manipulation for an agent remains NP-complete.
The payments we demand from the agents to the mechanism makes finding
this manipulation hard, while leaving the mechanism’s calculation simple and
tractable.
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The mechanism we suggest for the self-interested layered-graph network flow
problem indicates that for some problems we can devise tractable allocatively-
efficient, strategy-resistant, and ε-budget-balanced solutions. It remains an open
problem to characterize the domains in which such a solution is achievable. Also,
as explained above, this paper considers a domain in which finding a beneficial
manipulation is NP-hard to be a strategy-resistant domain. It also remains an
open problem to find domains in which we can achieve a stronger notion of
strategy-resistance.

4 Self-interested Network Flow

We now present the self-interested layered-graph network flow problem. Consider
a flow network on a layered graph. We have a graph G =< V, E >, with source
vertex s and target vertex t. The vertices of the graph are partitioned into n+1
layers, L0 = {s}, L1, ..., Ln = {t}. The edges only run between consecutive layers.
We have a capacity function c : E → IR which is the maximal flow allowed on
the edges. We also have a set I of agents. Each agent controls a subset Ei ⊂ E
of the graph’s edges. No two agents control the same edge: ∀i�=jEi ∩Ej = φ.

The mechanism chooses a valid flow from s to t. A valid flow is a function f :
E → R such that the following hold: ∀(u,v)∈Ef(u, v) ≤ c(u, v), ∀(u,v)∈Ef(u, v) =
−f(v, u), and ∀u∈V −{s,t}

∑
v∈V f(u, v) = 0. We denote the positive flow as fol-

lows: if f(u, v) > 0 then f+(u, v) = f(u, v), otherwise f+(u, v) = 0. We denote
the size of the flow |f | =

∑
v∈V f(s, v). The flow the mechanism chooses may

only go through edges that belong to some agent. The mechanism knows the
capacity constraints of the edges, but must treat edges not reported by an agent
as edges whose capacity is 0. Each agent values the flow chosen by the mecha-
nism according to the total flow going through its edges. Let f be the valid flow
chosen by the mechanism, and Ef the set of edges in f through which there is
a positive flow: Ef = {e ∈ E | f(e) > 0}. We denote the set of Ai’s edges used
in the flow f by: Ef,i = Ef ∩ Ei. The agent’s valuation of the flow is

vi(f) =
∑

e∈Ef,i

f(e). (4)

A direct revelation implementation for the self-interested network flow prob-
lem would require each agent to state its valuation of all possible flows, which
is not tractable. An alternative tractable implementation is to simply make the
type of an agent the set of its declared edges E′

i ∈ Ei. Given this information,
the mechanism could compute the agents’ valuations of any possible flow. We
will assume agents can only declare edges they actually own.

When the mechanism is given the agents’ true types, θ = E1, E2, ..., EI , we
want it to choose the flow that maximizes the total utility of the agents. The
mechanism would be allocatively-efficient if it chooses

f∗(θ) = arg max
f

∑
i

∑
e∈Ef,i

f(e). (5)
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4.1 Layered Graphs and Mechanisms for Network Flow

Consider a self-interested network flow problem in a layered graph. If each agent
truthfully declares its subset of edges, the mechanism can easily compute f∗(θ)
by running a maximal flow algorithm, such as the Edmonds-Karp algorithm.

Proof. Suppose the mechanism chooses a flow f . The total flow exiting s ends
up in vertices in L1. All the flow from L1 ends up in vertices in L2, and so on.
Since flow may only go through edges owned by some agent, the total utility
obtained by the flow f is∑
e∈E

f+(e) =
∑

u∈L1,v∈L2

f+(u, v)+...+
∑

u∈Ln−1,v∈Ln

f+(u, v)= |f |+...+|f | = (n−1)|f

(6)

A naive mechanism for the self-interested flow problem, with no payments to
the mechanism, is not strategy-proof. An agent may declare only a subset of the
edges it controls, to change the flow that the mechanism chooses to a flow that
the agent values more. Figure 1 shows two agents on a certain network flow (A1
and A2). A1’s edges are marked with dashed lines, and A2’s edges are marked
with full lines. A2 truthfully declares all its edges. Assuming the mechanism
favors A1 and chooses the specific maximal that maximizes A1’s utility among
all maximal flows, A1 can do better by not declaring its topmost edge (v1, v4),
gaining a utility of 2 instead of 1.

Fig. 1. Manipulations in self-interested flow problems

5 A Mechanism for the Self-interested Network Flow
Problem

We assume quasi-linear utility. Each agent pays the mechanism a payment pi,
and its utility is ui(f) = vi(f)−pi. We now show that by using a straightforward
payment rule, we make finding a beneficial manipulation NP-hard. The payment
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rule we use is simple: each agent pays the mechanism a constant of c for each
edge it declares it owns. Let E′

i ⊂ Ei be the subset of edges an agent declares it
owns. Then pi(E′

i) = c|E′
i|. To make sure the mechanism is individual rational,

the payment pi should give the agent a utility of 0 when the agent’s valuation
of the given flow is less than c|E′

i|. Thus, the payment rule is: if vi(f∗) > c|E′
i|

then pi = c|E′
i|, otherwise pi = vi(f∗).

Assume that Ai knows E′
j for all j �= i. It can easily calculate the utility it

would get by truthfully declaring all its edges. How hard is it for i to find a
subset of edges it could declare to the mechanism so as to gain a higher utility?
First, note that the question itself is under-constrained. Even given E′

j for all j,
including i, there may be several maximal flows; the mechanism is free to choose
any of them. However, we will show that even if Ai can decide which maximal
flow the mechanism chooses, it would still remain an NP-hard problem for that
agent to find a better subset of edges.

We now define the problem of finding the optimal manipulation in the self-
interested network flow domain.

FLOW-EDGE-SUBSET: We are given a layered graph flow network, with the
capacity function c : E → IR, E−i the declared edges of the other agents, and Ei,
the set of our edges. We are also given the constant c of the payment, and we know
that if we declare that we have k edges, our payment to the mechanism would
be pi = ck. We assume the mechanism prefers a maximal flow that maximizes
our utility: if we report a subset of edges E′

i ⊂ Ei the mechanism would choose
the maximal flow f∗ to be the flow that maximizes

∑
e∈Ef∗,i′ f(e) from among

all the possible maximal flows. We are also given a constant k, the target utility
for Ai. We are asked if there is a subset of Ai’s edges E′

i ⊂ Ei, such that the
maximal flow chosen by the mechanism, f∗(E1, ..., Ei−1, E

′
i, Ei+1, ..., EI) gives

Ai a utility of at least k:

ui(f∗, pi) = vi(f∗)− pi =
∑

e∈Ef∗,i

f(e)− c|E′
i| ≥ k. (7)

5.1 NP-Completeness of FLOW-EDGE-SUBSET

First, we note that FLOW-EDGE-SUBSET is in NP, because given a subset of
edges E′

i ⊂ Ei we can easily compute the maximal flow. We show that FLOW-
EDGE-SUBSET is NP-complete by reducing a general VERTEX-COVER prob-
lem to a FLOW-EDGE-SUBSET problem. The reduction shows that FLOW-
EDGE-SUBSET is NP-complete even if the inputs are restricted to problems
where there are only two agents, and the graph has only 5 layers.

VERTEX-COVER: We are given a graph G =< V, E > and a constant n and
are asked if there is a subset of n vertices V ′ ⊂ V, |V ′| = n that covers all the
edges ∀(u,v)∈E either u ∈ V ′ or v ∈ V ′.

The reduction is done as follows. From the VERTEX-COVER input, we build
inputs for the FLOW-EDGE-SUBSET problem. Given the original VERTEX-
COVER graph G, we build a layer graph G′. All the inputs to FLOW-EDGE-
SUBSET are built with this layer graph G′, and in all of them there are two
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agents, and we are asked about the utility of A1. In all of these inputs we have
the same set of A1’s edges E1, the same list of declared edges of the other agent,
and the same payment constant, c. This payment constant is chosen such that
the payment from A1 to the mechanism is always less than 1, even if A1 declares
all its edges.

The only difference between the inputs is the target utility k. These inputs
are constructed such that A1 has |V | edges, where |V | is the number of vertices
in G. The inputs are constructed so that the maximal utility A1 can achieve
is obtained by declaring some set of edges, E∗

1 , and in this case, A1’s utility is
u1(E∗

1 ) = v1(E∗
1 )−p1(E∗

1 ) = |E|−c|E∗
1 |, where |E| is the number of edges in the

VERTEX-COVER graph G, and |E∗
1 | is the number of vertices in the minimal

vertex-cover of G. We abuse notation a bit here, and denote u1(E′
1) and v1(E′

1)
as the utility and valuation A1 has when declaring the E′

1 subset of edges, since
the declared edges of all the other agents are known. Thus the flow chosen by
the mechanism only depends on A1’s chosen subset of edges, E′

1.

5.2 The Process of the Reduction

Since the payment from A1 to the mechanism is always a multiple of c, we
can easily check how many vertices are used in the minimal vertex-cover of G.
We construct G′ from G, and use FLOW-EDGE-SUBSET to check if we can
achieve a utility of at least |E| − |V |c, then check the possibility of achieving
|E| − (|V | − 1)c, then |E| − (|V | − 2)c, and so on. The answer would initially
be ‘yes’, since due to the construction, A1 can achieve a utility of |E| − |V |c by
declaring all its edges. A1 can decide to declare any number of edges between 0
and |V |. The questions are asked regarding higher and higher requested utilities,
so eventually, for some x ∈ IN, 0 ≤ x ≤ |V |, the answer for |E| − xc would be
‘no’. We would then know the best utility that A1 can achieve is |E| − (x + 1)c,
and thus the minimal vertex-cover of G is of size x + 1. This process involves
running FLOW-EDGE-SUBSET |V | times, so if FLOW-EDGE-SUBSET can be
done in polynomial time, then this process can also be performed in polynomial
time.

5.3 Constructing the FLOW-EDGE-SUBSET Inputs

We now describe how the inputs for FLOW-EDGE-SUBSET are constructed
from the VERTEX-COVER input. We build a 5-layer network flow graph, G′.
The L0 layer contains the single source vertex s, and the L4 layer contains the
single target vertex t. Layer L1 contains a vertex vei for each edge ei ∈ E in
the original VERTEX-COVER graph. Layer L2 contains a vertex vi,b for each
vertex vi ∈ V in the original VERTEX-COVER graph. Layer L3 contains a single
vertex vi,a for each vertex vi ∈ V in the original VERTEX-COVER graph.

The edges between the layers are constructed as follows. The source vertex
s is connected to all the vertices in L1, and then we mark the edge (s, vei ) as
eei . Every vertex vei in L1 is connected to exactly two vertices in L2. If edge
ei ∈ E in G connects vertices vi and vj in it, then vei is connected to vvi,b and
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vvj ,b in the constructed graph G′. Every vertex in L2 is connected to exactly one
vertex in L3. Vertex vvi,b in L2 is connected to vvi,a in L3. All the vertices in L3
are connected to the sink vertex t in L4. All the edges between L0 and L1 and
all the edges between L1 and L2 have a capacity of 1. All the other edges have
capacity of |E|.

As explained above, all inputs for FLOW-EDGE-SUBSET are given with
regard to A1. The set of A1’s edges E1 is (vvi,b, vvi,a), for all possible i. All of
the other edges belong to A2, and in the input given to FLOW-EDGE-SUBSET,
A2 declares all its edges. The payment constant c is chosen such that c < 1

|V |+|E| .
We demonstrate building the layer graph in Figure 2. The graph on the left of
Figure 2 is the input for the VERTEX-COVER, while the graph on the right is
the generated FLOW-EDGE-SUBSET layer graph.

Fig. 2. Reducing VERTEX-COVER to FLOW-EDGE-SUBSET

The intuition behind this construction is simple. A1’s edges in the constructed
graph represent vertices in the original graph G. A1 must choose a subset of edges
to report to the mechanism. Let E′

1 ⊂ E1 be the subset of edges that A1 chooses
to declare. Each such choice can also be seen as a choice of a subset of vertices
in G. These vertices cover certain edges in the original graph. We later refer to
these edges as ECG,E′

1
. The vei vertices in L1 represent the edges in G.

The construction makes sure that the mechanism can only send flow from s
to vei if ei is an edge covered by E′

1 (ei ∈ ECG,E′
1
). In fact, a flow going through

one of A1’s edges (vvi,b, vvi,a) can only originate from a vej vertex that represents
an edge ej that covers vi.

Thus A1’s valuation is limited by the number of edges covered by his chosen
set of vertices, or in other words by |ECG,E′

1
|. Therefore, A1 would choose E′

1
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to be edges representing a set of vertices that covers all the edges in G; it would
choose E′

1 such that E = ECG,E′
1
.

However, A1 also realizes it must give the mechanism payments for declaring
his edges. Since he pays a constant c per each edge he declares, A1 would want
to minimize the number of edges he declares. This conflicts with A1’s wish to
choose E′

1 so that E = ECG,E′
1
, since fewer vertices cover fewer edges.

By choosing a low enough payment constant c, we make sure that A1’s top
priority is to cover all the edges in G. It is only his second priority to minimize
the number of edges he declares. Thus, A1 actually wishes to choose E′

1 so that
the set of vertices E′

1 represents is the minimal vertex cover of G.
The following sections formally prove the intuitive claims above.

5.4 Properties of the Constructed Inputs

Lemma 1. If G had |E| edges, then in the generated network flow graph, A1’s
valuation cannot exceed |E|. If A1 can get a valuation of |E|, its utility is in the
range |E| − 1 ≤ u1(f) ≤ |E|.
Proof. The maximal flow cannot exceed |E|, because there are only |E| edges
between L0 and L1, each with a capacity of 1. All of A1’s edges are between
L2 and L3, so the maximal flow through them also cannot exceed |E|. Thus,
A1’s valuation of any flow f , v1(f), cannot exceed |E|. A1’s utility when a flow
f is chosen is u1(f, p1) = v1(f) − p1 = v1(f) − c|E′

1|. Due to the choice of c,
p1 = |E′

1| · 1
|V |+|E| < 1, so 0 ≤ pi ≤ 1.

Let E′
1 ⊂ E1 be the subset of edges that A1 chooses to declare. We denote

ECG,E′
1

= {ei ∈ E | ei = (vx, vy) and at least one of the following holds:
(vvx,b, vvx,a) ∈ E′

1 or (vvy ,b, vvy,a) ∈ E′
1}. Similarly, we denote ECG′,E′

1
= {eei |

ei ∈ ECG}. Intuitively, we identify the edge eei with the edge ei in the original
graph. We identify the edge (vvx,b, vvx,a) ∈ E1 with vertex vx in the original
graph G, and a subset of edges E′

1 ⊂ E1 with a subset of vertices VE′
1
⊂ V in

G. Such a set of vertices in G covers a subset of the edges in it. ECG is the
set of edges covered by these vertices VE′

1
, and ECG′ is the set of edges in G′

corresponding to the covered edges.

Lemma 2. Let E∗
1 ⊂ E1 be an optimal choice of edges for A1 to declare. Then

ECG,E∗
1

= E.

Proof. Let E∗
1 be an optimal choice of A1’s edges, f be the flow chosen by the

mechanism in this case, and ECG,E∗
1

be the subset of E, as explained above.
Assume by negation that there is some e = (x, y) ∈ E that e /∈ ECG,E∗

1
.

There cannot be any flow on ee in G′, since having such a flow f(s, ve) > 0
would require having either flow f(ve, vx,b) > 0 or f(ve, vy,b) > 0, since ve is
connected only to these two vertices. However, this would require having either
a flow f(vx,b, vx,a) > 0 or f(vy,b, vy,a) > 0, both of which cannot occur, since
e /∈ ECG,E∗

1
, and (vx,b, vx,a) /∈ E∗

1 , and (vy,b, vy,a) /∈ E∗
1 . Thus, there cannot be

any flow on ee, and the maximal flow between L0 and L1 cannot exceed |E|− 1.
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Suppose we add to E∗
1 the edge (vx,b, vx,a). This would allow the mechanism

to increase the flow in the following path by exactly 1: s, ve, vx,b, vx,a, t, resulting
in a flow f ′. The flow through A1’s edges is exactly the same as before, except
there is now a flow of 1 through (vx,b, vx,a), so v1(f ′) = v1(f) + 1. Since the
payment to the mechanism is always less than 1, the total utility of A1 has
increased, so E∗

1 was not an optimal choice for A1 to begin with.

Lemma 3. If A1 declares E′
1 ⊂ E1 such that ECG,E′

1
= E, the mechanism can

choose a flow f such that |f | = |E|.

Proof. We can fill the capacities of all the edges between L0 and L1, having the
vertices of L1 with a total incoming flow of |E|. Since ECG,E′

1
= E, we also have

ECG′,E′
1

= {eei | ei ∈ E}, and every vertex vei in L1 is connected to at least
one vertex vx,b in layer L2 that is connected (in turn) to vx,a in layer L3 by an
edge e ∈ E′

1. We choose the flow f(vei , vx,b) = 1. We then continue the flow by
sending the incoming flow of vertex vx,b to vx,a, by choosing

f(vx,b, vx,a) =
∑

vei
∈L1

f(vei , vx,b). (8)

We can do this since the capacity of the edges between L2 and L3 is |E|, so
c(vx,b, vx,a) = |E|, and there is no danger of having a flow coming into a ver-
tex vx,b higher than the total capacity of its outgoing edges. The flow is then
continued by sending all the incoming flow of vertex vx,a to the target vertex:
f(vx,a, t) = f(vx,b, vx,a). Again, this is possible since the capacity of the edges
between L3 and L4 is |E|.

Therefore, the optimal subset of edges that A1 can declare, E∗
1 ⊂ E1, allows the

mechanism to achieve the maximal possible flow f∗, of size |f∗| = |E|.

Lemma 4. The optimal subset of edges for A1, E∗
1 ⊂ E1, gives A1 a valuation

of v1(f∗) = |E|.

Proof. From Lemma 2 and Lemma 3 we know that if A1 declares E′
1 in the

optimal solution, the mechanism can choose a flow f such that |f | = |E|. By
Lemma 1 this is a maximal flow that maximizes the utility of A1. Since A1
controls all the edges between L2 and L3 and has no other edges, we have a
total flow of |E| through A1’s edges.

As a private case of Lemma 4, we get that A1 can get a valuation of |E| by
declaring all of its edges, since ECG,E1 = E. This case gives A1 a utility of
|E| − c|E1|, since we have declared |E1| edges.

Lemma 4 shows that the optimal subset of edges for A1, E∗
1 ⊂ E1, gives A1

a valuation of v1(f∗) = |E|. However, to calculate A1’s utility in this case, we
must also know the payment that A1 gives the mechanism. This payment only
depends on the number of edges in E∗

1 .
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5.5 Proof of the Reduction

We now prove the validity of the reduction, by showing that the the maximal
utility A1 can achieve in the constructed network flow graph is determined by
the size of the minimal vertex cover in the original graph.

Theorem 1. The size of the minimal vertex-cover of G is k if and only if the
maximal utility of A1 in the constructed inputs to FLOW-EDGE-SUBSET is
|E| − kc.

Proof. Assume the maximal utility A1 can achieve is |E|−kc. Due to Lemma 4,
in order to obtain this optimal utility A1 has to declare E′

1 ⊂ E1, a subset
of edges with size |E′

1| = k. Consider the set VE′
1

= {vx ∈ V | (vx,a, vx,b) ∈
E′

1}. From Lemma 2 we have ECG,E′
1

= E, so this set is a vertex-cover of
G. Its size is |VE′

1
| = k , since the payment A1 made to the mechanism is

kc. Assume by negation that this is not the minimal vertex-cover of G. Then
there exists a vertex cover V C′ with a smaller size of |V C′| = k′. Consider
EV C′ = {(vx,b, vx,a) ∈ E1 | vx ∈ V C′}. This is a subset of A1’s edges that (by
definition of ECG,X), ECG,EV C′ = E. Thus, v1(EV C′) = |E|. However, since
|V C′| = k′ < k = |VE′

1
|, the payment from A1 to the mechanism for declaring

EV C′ is only p1(EV C′) = k′ < k. Thus the utility of A1 when using EV C′ is
u1(EV C′) = v1(EV C′) − p1(EV C′) = |E| − k′c > |E| − kc = u1(E′

1), and we
would have a subset of edges giving a better utility than the optimal solution.

On the other hand, if we have a vertex-cover V C for G with size |V C| = k,
consider EV C = {(vx,b, vx,a) ∈ E1 | vx ∈ V C}. Again, this is a subset of A1’s
edges that (by definition of ECG,X) makes ECG,EV C = E. Thus, v1(EV C′) =
|E|. The utility of A1 when using EV C is u1(EV C) = v1(EV C) − p1(EV C) =
|E| − kc, so a utility of |E| − kc is achievable.

It remains to show that this is the maximal utility achievable. Suppose, by
negation, that we have a choice of edges E′

1 ⊂ E1 that gives A1 a higher util-
ity. The valuation of E′

1 must also be v1(E′
1) = |E|, since a higher valuation

is not possible, and a lower valuation would result in a utility that is below
u1(EV C) (since the payment to the mechanism is less than 1). This means that
the payment for E′

1 is less than the payment for EV C , or |E′
1| < |EV C |. As

explained above, in order to achieve a utility of |E|, E′
1 must be a set such that

ECG,E′
1

= E, so VE′
1

= {vx ∈ V | (vx,b, vx,a) ∈ E′
1} must be a vertex-cover of

G. However, since |VE′
1
| = |E′

1| < |EV C |, this would be a vertex-cover of a size
smaller than the size of the minimal vertex-cover.

Due to Theorem 1, the process of the reduction as described above is valid, and
FLOW-EDGE-SUBSET is NP-complete.

6 Conclusions and Future Directions

We have presented a mechanism for the distributed network flow problem with
self-interested agents. With a proper choice of the payment constant c, find-
ing a beneficial manipulation is an NP-complete problem. If most instances of
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the manipulation problem are indeed computationally intractable, we expect
agents would truthfully report their preferences. In this case, the mechanism
would choose the result maximizing the sum of agents’ utilities, and we have an
allocatively-efficient mechanism.

Given some ε > 0, we can make the mechanism ε-budget-balanced, by choos-
ing a constant c = ε

n(|E|+|V |) , so that all of the agents together pay less than ε.
The mechanism we have described is also individual rational. The mechanism’s
calculation is tractable, and only involves a polynomial algorithm for finding the
maximal network flow. This indicates that the agents’ difficulty in finding a ben-
eficial manipulation is not caused by any difficulty in simulating the mechanism,
but is instead caused by the difficulty of trying exponentially many options of
untruthful declarations to the mechanism.

Therefore, in the domain of network flow, it is possible to achieve an
individually-rational, allocatively-efficient, ε-budget-balanced, and strategy-
resistant mechanism. The standard VCG solution in this domain would be only
weakly budget-balanced, but strategy-proof. Impossibility results [1] and [2] in-
dicate that no direct-revelation mechanism can achieve strong budget-balance
without sacrificing either allocative-efficiency or strategy-proofness. We believe
that in many cases, trading strategy-proofness for strategy-resistance is a fair
price to pay for achieving strong budget-balance.

There has been much work dedicated to overcoming the intractability of mech-
anisms, since in building a real-world mechanism we cannot assume unbounded
computation. However, if we are not willing to accept unbounded-rationality on
the mechanism’s part, we must also consider the implications of the bounded-
rational nature of the agents.

We believe that strategy-proofness should not be the only criteria when con-
sidering the susceptibility of a mechanism to manipulations. In fact, we believe
it is found on one end of a scale of susceptibility. On the other end of this
scale are mechanisms where there exists a poly-time algorithm for finding the
optimal manipulation. Such mechanisms probably cannot be used in practice,
since they are so easy to manipulate. Between these two extremes is the re-
gion of strategy-resistant mechanisms. In this paper we have implicitly defined a
strategy-resistant mechanism as one in which it is NP-hard to find the optimal
manipulation. As we have commented above, this is a rather weak notion of
strategy resistance. A preferable solution would be one in which it is computa-
tionally intractable to find any manipulation. NP-hardness is not sufficient for
a problem to be computationally intractable. For example, we can require the
manipulation problem to have no approximation methods, or show that most
instances of the manipulation problem are indeed hard.

In this paper we have shown that in the network flow domain, we can gain
budget-balance by giving up strategy proofness, and replacing it with our notion
of strategy-resistance. Assuming we are willing to accept strategy-resistance as
a sufficient guarantee that agents would truthfully declare their types, we have
improved the results obtained by VCG for this problem.
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We have chosen the self-interested network flow domain, because in this case
we were able to find a mechanism that was tractable in its computational prop-
erties, and also had good results in the sense of being budget-balanced. This
domain demonstrates that by using a very simple payment scheme we can cre-
ate a significant gap between the amount of work the mechanism performs (in
this case a simple poly-time algorithm) and the amount of work an agent is re-
quired to perform in order to find a beneficial manipulation (in this case solving
an NP-hard problem). We believe further research can find domains in which
the mechanism is required to perform harder work (e.g., solving an NP-hard
problem by approximation), and manipulations are completely intractable. It
may be possible to achieve budget-balance while retaining a stronger notion of
strategy-resistance, even in this domain. Also, it may be possible to find other
valuable tradeoffs in other domains. It remains an open problem to characterize
the domains in which using computational complexity in this way is possible, and
to find domains in which a stronger sense of strategy-resistance can be achieved.
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Abstract. The Shapley value provides a unique solution to coalition games and
is used to evaluate a player’s prospects of playing a game. Although it provides
a unique solution, there is an element of uncertainty associated with this value.
This uncertainty in the solution of a game provides an additional dimension for
evaluating a player’s prospects of playing the game. Thus, players want to know
not only their Shapley value for a game, but also the associated uncertainty. Given
this, our objective is to determine the Shapley value and its uncertainty and study
the relationship between them for the voting game. But since the problem of de-
termining the Shapley value for this game is #P-complete, we first present a new
polynomial time randomized method for determining the approximate Shapley
value. Using this method, we compute the Shapley value and correlate it with
its uncertainty so as to allow agents to compare games on the basis of both their
Shapley values and the associated uncertainties. Our study shows that, a player’s
uncertainty first increases with its Shapley value and then decreases. This implies
that the uncertainty is at its minimum when the value is at its maximum, and that
agents do not always have to compromise value in order to reduce uncertainty.

1 Introduction

Coalition formation is the process of joining together of two or more agents so as to
achieve goals that individuals on their own cannot, or to achieve them more efficiently
[9]. Often, in such situations, there is more than one possible coalition and a player’s
payoff depends on the coalition it joins. Given this, a key problem in this area is to
ensure that none of the parties in a coalition has any incentive to break away from it and
join another coalition (i.e., the coalitions are stable). However, in many cases there may
be more than one solution (i.e., a stable coalition). In such cases, it becomes difficult
to select a single solution from among the possible ones, especially if the parties are
self-interested (i.e., they have different preferences over stable coalitions).

In this context, cooperative game theory deals with the problem of coalition for-
mation and offers a number of solution concepts that possess desirable properties like
stability, fair division of joint gains, and uniqueness [3,7]. Multiagent systems research
has used and extended these game-theoretic solutions to facilitate automated coalition

H. La Poutré, N. Sadeh, and S. Janson (Eds.): AMEC and TADA 2005, LNAI 3937, pp. 85–98, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



86 S.S. Fatima, M. Wooldridge, and N.R. Jennings

formation [9,14,12]. In this work, one of the most extensively studied solution concepts
is the Shapley value [13]. The Shapley value provides a unique solution and is therefore
used to evaluate a player’s prospects of playing a game.

Although the Shapley value provides a unique solution, it has two key drawbacks.
First, for the weighted voting game that we consider, the problem of determining the
Shapley value is #P-complete [1]. Second, it provides the solution only with a limited
degree of certainty [11]. Thus the uncertainty in the Shapley value provides an addi-
tional dimension for evaluating a player’s prospects of playing a game and a measure
of uncertainty would serve as a useful tool to investigate this aspect of a game. Charac-
terizing a game by both its value and uncertainty is like characterising a weapon by its
power and precision, or a financial stock by its expected return and risk [4].

The concept of uncertainty in the outcome of a game is not entirely new. For in-
stance, Roth showed that the Shapley value of a game equals its utility, if and only if the
underlying player preferences are neutral to both ordinary1 and strategic risk [10,11].
Otherwise, the Shapley value is not the same as utility and is therefore insufficient for
decision-making purposes. Kargin extended this concept further by introducing a mea-
sure for determining the strategic risk [4]. This measure is called the uncertainty of the
Shapley value and it provides a yardstick for quantifying the strategic risk. Thus, in or-
der for a player to make more informed decisions, it is important for it to not only know
its Shapley value, but also the relation between this value and its uncertainty. However,
to date, there has been no analysis of this relationship.

Given this, our objective is to analyse the relation between the Shapley value and its
uncertainty for the voting game (since it is an important mechanism for multiple agents
to reach consensus). However, uncertainty is defined in terms of the Shapley value (i.e.,
in order to find uncertainty, the Shapley value needs to be determined first). But, as
we pointed out, the problem of determining the Shapley value has been shown to be
#P-complete [1]. We therefore present a new randomised method (that has polynomial
time complexity) for computing the approximate Shapley value. Using this method, we
determine the Shapley value and correlate it with its uncertainty. Our study shows that
each player’s uncertainty first increases with its Shapley value and then decreases. This
implies that the uncertainty is at its minimum when the value is at its maximum, and
that agents do not always have to compromise value in order to reduce uncertainty.

To our knowledge, the only work that addresses the problem of uncertainty in the
Shapley value is [10,11,4]. While [10,11] introduces the concept of strategic risk in the
context of the Shapley value, [4] defines a measure (called uncertainty) for this risk.
Our paper therefore makes a twofold contribution. First, we present a polynomial time
method along the lines of Monte Carlo simulation (see Section 3 for details) for com-
puting the Shapley value for the voting game. Second, using this method we compute
the Shapley value and analyse its relation with uncertainty.

Section 2 defines the Shapley value and its uncertainty. Section 3 describes the
weighted voting game. Section 4 to Section 7 determine the relation between the Shap-
ley value and its uncertainty. Section 8 concludes.

1 Ordinary risk involves the uncertainty that arises from the chance mechanism involved in lot-
teries. On the other hand, strategic risk involves the uncertainty that arises as a result of inter-
action in a game of strategic players (i.e., those players that are not dummy).
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2 The Shapley Value and Its Uncertainty

We begin by introducing coalition games and then define the weighted voting game.
Coalition games are of two types ([7]): those with transferable payoff and those with
non-transferable payoff. A coalition game with transferable payoff, 〈N, v〉, consists of
a finite set (N = {1, 2, . . . , n}) of players and a function (v) that associates with every
non-empty subset S of N (i.e., a coalition) a real number v(S) (the worth of S).

For each coalition S, the number v(S) is the total payoff that is available for division
among the members of S (i.e., the set of joint actions that coalition S can take consists
of all possible divisions of v(S) among the members of S). Coalition games with non-
transferable payoffs differ from ones with transferable payoffs in the following way.
For the former, each coalition is associated with a set of payoff vectors that is not
necessarily the set of all possible divisions of some fixed amount. In this paper, we
focus on the Shapley value for a game with transferable payoffs.

Let S denote the set N−{i} and fi : S → 2N−{i} be a random variable that takes its
values in the set of all subsets of N − {i}, and has the probability distribution function
(g) defined as:

g{fi(S) = S} =
|S|!(n− |S| − 1)!

n!
The random variable fi is interpreted as the random choice of a coalition that player
i joins. A player’s Shapley value [13] is defined in terms of its marginal contribution.
The marginal contribution of player i to coalition S with i /∈ S is a function ∆iv that
acts in the following way:

∆iv(S) = v(S ∪ {i})− v(S)

Definition 1. The Shapley value (ϕi) of the game 〈N, v〉 for player i is the expectation
(E) of its marginal contribution to a coalition that is chosen randomly, i.e., ϕi(N, v) =
E{∆iv ◦ fi}
The Shapley value is interpreted as follows. Suppose that all the players are arranged in
some order, all orderings being equally likely. Then ϕi(N, v) is the expected marginal
contribution, over all orderings, of player i to the set of players who precede him. The
uncertainty of the Shapley value, is defined as follows [4]:

Definition 2. The uncertainty (βi) for player i is the variance (V ar) of its marginal
contribution. Thus βi(N, v) = V ar{∆iv ◦ fi}
Thus, while a player’s Shapley value is the expectation (i.e., the mean), its uncertainty
is the variance (i.e., the square of the standard deviation) of its marginal contribution.
In other words, the uncertainty is the expectation of the squared difference between the
actual and expected marginal contributions.

The utility of a player that is not neutral to strategic risk depends on both its Shapley
value and the associated uncertainty. Furthermore, such a player’s utility function is
subjective and different players may have different functions for the same game. But
for a given game, the relation between the Shapley value and its uncertainty is not
subjective to player preferences and is the same for all players. We therefore analyse
this relation for the voting game described in Section 3.
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3 The Weighted Voting Game

We adopt the definition of voting game given in [7]. There is a set of n players that
may, for example, represent shareholders in a company or members in a parliament.
The weighted voting game is a game G = 〈N, v〉 in which

v(S) =
{

1 if w(S) ≥ q
0 otherwise

for some q ∈ IR+ and wi ∈ IRN
+ , where w(S) =

∑
i∈S wi for any coalition S. Thus

wi is the number of votes that player i has and q is the number of votes needed to win
the game (i.e., the quota). For this game (denoted 〈q; w1, . . . , wn〉), a player’s marginal
contribution is either zero or one.

The problem of determining the Shapley value for the weighted voting game is #P-
complete [1]. A problem is #P-hard if solving that problem is as hard as counting sat-
isfying assignments of propositional logic formulae [8, p442]. Since #P-completeness
thus subsumes NP-completeness, this implies that computing the Shapley value for the
weighted voting game will be intractable in general. To overcome this problem, two
methods have been proposed: Monte Carlo simulation [5] and the method of generat-
ing functions [6]. The former method treats the number of swings2 for each player as
a random variable over a given distribution and defines the Shapley value in terms of
these random variables. While this method gives the approximate Shapley value, the
generating functions method is an exact procedure. Although it is an exact procedure,
it requires very large arrays (i.e., it requires substantial storage space) and can only be
applied to games with integer weights and quotas.

The method we present is similar to that of [5] in the sense that it is an approxima-
tion method. But the difference is that while [5] defines the Shapley value by treating a
player’s number of swings as a random variable, we treat the players’ weights as ran-
dom variables. Since the voting game is defined in terms of the players’ weights and
the number of swings are obtained from these weights, our method corresponds more
closely to the definition of the voting game. Furthermore, it does not require large ar-
rays and is therefore economical in terms of storage space. The proposed method has
polynomial time complexity. We first consider a simple voting game in which all play-
ers have equal weight. We then extend our analysis to a game with two types of players:
large and small, and finally generalise it to more than two player types.

4 All Players Have Equal Weight

Consider the game 〈q; j, . . . , j〉 with m parties. Each party has j seats. If q ≤ j, then
there would be no need for players to form a coalition. On the other hand, if q = mj
(m = |N | is the number of players), only the grand coalition is possible. Thus, the
quota (q) satisfies the constraint: (j + 1) ≤ q ≤ j(m − 1). A majority is decisive. The
value of a coalition is one if the weight of the coalition is greater than or equal to q,
otherwise it is zero.

2 A swing for a player i is a pair of coalitions (x, x∪ i) such that x is losing but x∪ i is winning.
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Fig. 1. Shapley value vs. uncertainty

Let ϕ denote the Shapley value for a player and β denote its uncertainty. Consider
any one player. This player can join a coalition as the ith member where 1 ≤ i ≤ m.
However, the marginal contribution of the player is 1 only if it joins a coalition as
the �q/j�th member. In all other cases, its marginal contribution is zero. Thus, the
Shapley value for each player is ϕ = 1/m. We know from Definition 2, that a player’s
uncertainty is the variance of its marginal contribution. Hence, for each player, the
uncertainty (denoted β) is:

β = (1− ϕ)ϕ2 + (1− ϕ)2ϕ (1)

Having expressed a player’s uncertainty in terms of its Shapley value, we can now
correlate them. To this end, Figure 1 shows how the uncertainty varies with the Shap-
ley value. Since the Shapley value lies in the interval [0, 1], Figure 1 plots uncertainty
for this interval. As seen in the figure, uncertainty first increases as the Shapley value
increases and then decreases. Uncertainty is maximum at ϕ = 1/2. The following sec-
tions analyse the voting game for the case where all parties do not have equal weight.

5 A Single Large Party

Consider a parliament in which there is one party with j > 1 seats, and m parties
each with one seat. Thus, there are two types of players: large (with weight j) and
small (with unit weight). The quota for this game is q, i.e., we have a game of the form
〈q; j, 1, 1, . . . , 1〉. The total number of players is (m + 1). The value of a coalition is
one if the weight of the coalition is greater than or equal to q, otherwise it is zero. Let
ϕl denote the Shapley value for the large player and ϕs that for each small player. As
we will show, the Shapley value of this game depends on whether or not q is greater
than m. We therefore study the two possible cases: q ≤ m and q > m:

1. Consider q ≤ m first. The smallest possible value for q is j + 1. This is because, if
q ≤ j, then the large party can win the election on its own, without the need for a
coalition. Thus, the quota for the game satisfies the relation j +1 ≤ q ≤ m+ j−1.
Also, the lower and upper limits for j are 2 and (q − 1) respectively. The lower
limit is 2 because the weight of the large party has to be greater than each small
one. Furthermore, the weight of the large party cannot be greater than q, since in
that case there would be no need for the large party to form a coalition. Recall that
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for our voting game, a player’s marginal contribution to a coalition has only two
possible values: zero or one.
Consider the large party. This party can join a coalition as the ith member where
i satisfies 1 ≤ i ≤ (m + 1). However, the marginal contribution of the large
party is one if it joins a coalition as the ith member where i satisfies the condition
(q − j + 1) ≤ i ≤ q. In all the remaining cases, its marginal contribution is zero.
Thus, out of the total (m + 1) possible cases, its marginal contribution is one in j
cases. Hence, the Shapley value of the large party is:

ϕl = j/(m + 1) (2)

Consider a small player. For a small player, the marginal contribution is one in
two cases. First, if it joins a coalition (that already has the large party in it) as the
(q − j + 1)th member. Out of the (m + 1)! possible permutations, the number of
permutations that satisfy this condition is (q − j)(m − 1)!. Second, if it joins a
coalition (consisting of q − 1 small players) as the qth member. The number of
permutations that satisfy this condition is (m− q +1)(m−1)!. Hence, the Shapley
value of each small party is:

ϕs = (m− j + 1)/m(m + 1) (3)

Using Definition 2, we get the uncertainty for the large party as:

βl = (1− ϕl)ϕl
2 + ϕl(1− ϕl)2 (4)

For each small party, the uncertainty is:

βs = (1− ϕs)ϕs
2 + ϕs(1− ϕs)2 (5)

2. Consider q > m. As before, the quota satisfies the relation j + 1 ≤ q ≤ m + j− 1.
Also, 2 ≤ j ≤ (q − 1). Consider the large party. As before, this party can join
a coalition as the ith member where 1 ≤ i ≤ (m + 1). However, its marginal
contribution is one only if it joins as the ith member where (q − j + 1) ≤ i ≤ q.
Thus, out of all (m + 1) possible cases, its marginal contribution is one in j cases.
Hence the Shapley value of the large party is:

ϕl = j/(m + 1) (6)

Consider a small player. Since q > m, a small player’s marginal contribution is one
in only one case: if it joins a coalition (that already has the large party in it) as the
(q − j + 1)th member. Out of the (m + 1)! possible permutations, the number of
permutations that satisfy this condition is (q− j)(m−1)!. Hence the Shapley value
of each small party is:

ϕs = (q − j)/m(m + 1) (7)

We get the uncertainty for the large party as:

βl = (1− ϕl)ϕl
2 + ϕl(1− ϕl)2 (8)

For each small party, the uncertainty is:

βs = (1− ϕs)ϕs
2 + ϕs(1− ϕs)2 (9)
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Note that for each player, uncertainty (in Equations 4, 5, 8, and 9) has the same
relation with Shapley value as that for Equation 1. Therefore, the plot in Figure 1 ap-
plies to Equations 4, 5, 8, and 9 as well. Thus, for the voting game with a single
large player, each player’s uncertainty first increases as its Shapley value increases. A
player’s uncertainty is at a maximum when its Shapley value is 1/2. As the Shapley
value increases further, uncertainty decreases.

6 Multiple Large and Multiple Small Parties

Consider a parliament in which there are m parties. The set of parties consists of km
large parties and (1− k)m small parties where 0 ≤ k ≤ 1. As before, each large party
has j seats and each small one has one seat. The total seats in a coalition of size m is
mkj +(1−k)m. Thus, in a given population of players, the proportion of large players
is k. Here, the quota (q) satisfies the constraint (j + 1) ≤ q ≤ (kmj + (1− k)m− 1).
As before, the lower and upper limits for j are 2 and (q − 1) respectively. Finally, the
value of a coalition is one if it has q or more seats, otherwise it is zero.

A Randomised Method for the Shapley Value. In order to determine a player’s Shap-
ley value, we consider a sample from the above defined population of players. Let this
sample be a large random coalition of size X . Let k̂ denote the proportion of large play-
ers in this sample. Irrespective of how the population is distributed, the proportion of
large players in a sample of size X is distributed approximately normally, with mean
µ = k and variance ν = k(1− k)/X (see [2] p435), i.e., we have:

k̂ ∼ N (k,
k(1− k)

X
) (10)

On the basis of Equation 10, we obtain the Shapley value as follows. Consider a large
party. The marginal contribution of this party to the random sample is one if the weight
of the sample is less than the quota (q) but is greater than or equal to (q− j). Otherwise,
its marginal contribution is zero. We know that the mean weight of the sample is k̂Xj+
(1 − k̂)X . Let a denote the proportion of large players that is required for the random
sample to have mean weight (q − j) (i.e., a = (q − j − X)/(X(j − 1))). Also, let b
denote the proportion of large players that is required for the random sample to have
mean weight (q − ε) (where ε is an infinitesimally small positive number) (i.e., b =
(q − X − ε)/(X(j − 1))). The expected marginal contribution of a large player to
the random sample is the area under the curve defined by the normal distribution of
Equation 10 between the limits a and b, i.e.,

∆X
l =

1√
(2πν)

∫ b

a

e−
(x−µ)2

2ν dx (11)

Therefore, a large player’s Shapley value is:

ϕl =
1
m

m∑
X=1

∆X
l (12)

and its uncertainty is:
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Fig. 2. A large player’s Shapley value and uncertainty for a varying weight

βl =
1
m

m∑
X=1

(∆X
l − ϕl)2 (13)

Consider a small party. The marginal contribution of this party, when added to a
sample, is one if the weight of the sample is less than the quota (q) but is greater than or
equal to (q − 1). Otherwise, its marginal contribution is zero. We know that the mean
weight of the sample is k̂Xj + (1 − k̂)X . Let c denote the proportion of large players
that is required for the random sample to have mean weight (q − 1) (i.e., c = (q − 1−
X)/(X(j − 1))). Also, let d denote the proportion of large players that is required for
the random sample to have mean weight q − ε (i.e., d = (q − X − ε)/(X(j − 1))).
The marginal contribution of a small player is the area under the curve defined by the
normal distribution of Equation 10 between the limits c and d, i.e.,

∆X
s =

1√
(2πν)

∫ d

c

e−
(x−µ)2

2ν dx (14)

Therefore, for each small player, the Shapley value is:

ϕs =
1
m

m∑
X=1

∆X
s (15)

and the uncertainty is:

βs =
1
m

m∑
X=1

(∆X
s − ϕs)2 (16)

Theorem 1. The time complexity of the above randomised method for determining the
Shapley value is polynomial in the number of players. The inaccuracy of this method
decreases with X and increases with ε.

Proof. The time required to compute the marginal contribution of a player to a coalition
of size i (for 1 ≤ i ≤ m) is independent of the number of players (see Equations 11 and
14). A player can join the coalition as the ith member (for 1 ≤ i ≤ m). The marginal
contribution of a player is determined for each of these m possible cases. Therefore,
the time taken to compute the Shapley value is O(m).
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Fig. 3. A small player’s Shapley value and uncertainty for a varying weight
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Fig. 4. A large player’s Shapley value and uncertainty for a varying quota

The accuracy of the proposed method depends firstly on X . We know from [2], that
the inaccuracy in Equation 10 decreases as X increases. Consequently, the inaccuracy
of the proposed method decreases with X . The second source of inaccuracy is ε > 0. It
is obvious that the closer ε is to zero, the higher the accuracy. Thus, the inaccuracy of
the proposed method increases with ε. �

We now analyse the relation between the Shapley value and its uncertainty. From the
above equations, we know that the Shapley value and its uncertainty depend on three
parameters: the number of players (m), the weight associated with each large party
(j), and the quota (q) for the game. Thus, we systematically vary these parameters in
order to study the relation between a player’s Shapley value and its uncertainty. These
parameters are varied as follows. We varied k between 0.1 and 0.9. This is because we
want multiple large and multiple small players, and for a large m, this range for k gives
us that. For each k, we varied the parameters m, j, and q such that the following two
constraints are satisfied:

C1 No player can win an election on its own (i.e., j < q).
C2 The maximum number of parties required to win an election is less than the total

number of parties (i.e., q < mkj + (1− k)m).

Thus, for each k, we determined the Shapley value and its uncertainty for different
values of j and q that satisfy constraints C1 and C2. This entire set of variations was
repeated for different values of m.
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Fig. 5. A small player’s Shapley value and uncertainty for a varying quota
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Fig. 6. A large player’s Shapley value and uncertainty for a varying number of players

Although a player’s Shapley value and its uncertainty vary with j, k, q, and m, the
uncertainty was always found to increase with Shapley value. More specifically, for the
constraints defined above, if the number of players is large (i.e., m ≥ 20) and there
are multiple large and multiple small players, we found the following relation. For each
player, the uncertainty increases as its Shapley value increases (see Figures 2 to 7).

To begin, consider Figure 2. For m = 200 and q = 200, this is a plot of a large
player’s Shapley value and uncertainty for differing weights (i.e., different values for
j). For each value of j, the figure shows the Shapley value and uncertainty for all k
between 0.1 and 0.9. Likewise, Figures 3 is a plot for each small player.

For m = 200 and j = 5, Figure 4 is a plot for a large player’s Shapley value and
uncertainty for a varying quota. For each quota (i.e., q), the figure shows the Shapley
value and uncertainty for all k between 0.1 and 0.9. Figure 5 is a plot for each small
player.

Consider Figure 6. For j = 5 and q = 25, this is a plot of a large player’s Shapley
value and uncertainty for a varying number of players. For each m, the figure shows the
Shapley value and uncertainty for k between 0.1 and 0.9. Likewise, Figures 7 is a plot
for each small player.

Thus, for two player types and variations of j, k, q, and m that satisfy constraints C1
and C2, the uncertainty for each player (large or small) increases as its Shapley value
increases. It is worth noting that in all the above figures, the number of players is at
least 20, and there is more than one player of each type (i.e., 0.1 ≤ k ≤ 0.9). For such
games, the Shapley value of each player is less than 0.5. Thus, the relation between the
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Fig. 7. A small player’s Shapley value and uncertainty for a varying number of players

Shapley value and its uncertainty is the same as that for the left half of the curve of
Figure 1 (i.e., for ϕ < 0.5).

7 More Than Two Player Types

Consider a voting game with more than two types of players. Let wi denote the weight of
player i. Thus, for m players and for quota q the game is of the form 〈q; w1, w2, . . . , wm〉.
Consider a player population in which each individual player’s weight has a standard
normal distribution3 –N (0, 1). Since this distribution allows negative weights, we trans-
form this to N (4, 1) in order to get positive weights. We know from Definition 1, that
the Shapley value for a player is the expectation (E) of its marginal contribution to a
coalition that is chosen randomly. Thus, in order to determine the Shapley value for the
above population of players (i.e., N (4, 1)), we use the following rule from Sampling
Theory (see [2] p417) that holds good for a normal distribution.

From a normal distribution (with mean µ and variance ν), if a sample of size m is
drawn, then the sum of the weights of all m players in the sample has the distribu-
tion N (mµ, mν). Thus, for the distribution (N (4, 1)) we defined above, the sum of
the weights of the players in a random sample of size m is given by the distribution
N (4m, m). We use this rule to determine the Shapley value as follows.

A Randomised Method for the Shapley Value. For player i with weight wi, let ϕi de-
note the Shapley value and βi its uncertainty. Let X denote the size of a large random
sample drawn from a population in which individual player weights have the distribu-
tion N (4, 1). The marginal contribution of player i to this random sample is one, if the
total weight of the X players in the sample is greater than or equal to q − wi but less
than q. Otherwise, its marginal contribution is zero. Thus, the expected marginal con-
tribution of player i (denoted ∆X

i ) to the sample coalition is the area under the curve

3 Note that in Section 6 when we dealt with two player types, there was no restriction on how the
population was distributed. But for more than two player types, we assume that the population
has a normal distribution. Thus, while the results of Section 6 are valid for two player types
with any population distribution, the results of this section are valid for more than two player
types that have a normal distribution.
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Fig. 8. Shapley value and uncertainty for a game of 20 players and a varying weight

defined by N (4X, X) in the interval [q − wi, q − ε], i.e.,

∆X
i =

1√
(2πν)

∫ q−ε

q−wi

e−
(x−4X)2

2X dx (17)

and its Shapley value is

ϕi =
1
n

m∑
X=1

∆X
i (18)

It is easy to verify that the time complexity of this method is O(m). Also, the two
sources of inaccuracy are X and ε. As in the case of the randomised method of Sec-
tion 6, the inaccuracy decreases with X and increases with ε. The uncertainty associated
with the Shapley value is:

βi =
1
n

m∑
X=1

(ϕi −∆X
i )2 (19)

For the case of more than two player types, we define the following constraints on q
and wi (for 1 ≤ i ≤ m):

C3 No player can win the game on its own (i.e., (wi < q) for 1 ≤ i ≤ m).
C4 The number of players required to win an election is less than m (i.e., the quota is

less than 4m2).

We use the above equations and systematically vary parameters q, wi (for 1 ≤ i ≤
m), and m, such that constraints C3 and C4 are always satisfied, and determine the rela-
tion between the Shapley value and its uncertainty. These results are plotted in Figures
8 to 10. Consider Figure 8. For each quota, an individual player’s weight is varied be-
tween 1 and q − 1. As seen in the figure, uncertainty first increases with Shapley value
and then decreases. Figure 9 is a plot for m = 50 and Figure 10 that for m = 100. In
all these figures, a player’s uncertainty first increases with its Shapley value and then
decreases. Thus, the relation between the Shapley value and its uncertainty is the same
as that in Figure 1.
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Fig. 10. Shapley value and uncertainty for a game of 100 players and a varying weight

To sum up, our study provides a basis for agents to compare games on the basis of
both their Shapley values and the associated uncertainties. We showed that a player’s
uncertainty first increases with its Shapley value and then decreases. This implies that
the uncertainty is at its minimum when the value is at its maximum, and that agents do
not always have to compromise value in order to reduce uncertainty. This is because, if
the Shapley value lies in the range [0.5..1], then an increase in value is associated with
a decrease in uncertainty.

8 Conclusions and Future Work

Although the Shapley value provides a unique solution that gives an indication of an
agent’s power relative to that of others, it also has an element of uncertainty associated
with it. Given this, the uncertainty is an additional dimension that an agent should take
into account for evaluating its prospects of playing a game. Against this background,
this paper has analysed the relation between the Shapley value and its uncertainty for
the weighted voting game. Since the problem of determining the Shapley value is #P-
complete, we first presented a randomised method with polynomial time complexity.
Using this method, we computed the Shapley value and correlated it with its uncer-
tainty. Our study shows that a player’s uncertainty first increases with its Shapley value
and then decreases. Although our present work provides an analysis for the case where
different players have different weights, the distribution of weights was assumed to be
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normal. In future, we will generalise our results, by extending this analysis to other
types of distribution functions. Also, we will carry out the same analysis for other com-
monly occurring games like the production-economy and the market-economy.
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Abstract. We present and analyze results from the 2004 Trading Agent Com-
petition supply chain management scenario. We identify behavioral differences
between the agents that contributed to their performance in the competition. In
the market for components, strategic early procurement remained an important
factor despite rule changes from the previous year. We present a new experimen-
tal analysis of the impact of the rule changes on incentives for early procurement.
In the finals, a novel strategy designed to block other agent’s access to suppliers at
the start of the game was pivotal. Some agents did not respond effectively to this
strategy and were badly hurt by their inability to get crucial components. Among
the top three agents, average selling prices in the market for finished goods were
the decisive difference. Our analysis shows that supply and demand were key fac-
tors in determining overall market prices, and that some agents were more adept
than others at exploiting advantageous market conditions.

1 Introduction

The Trading Agent Competition (TAC) provides an international forum for researching
the design and analysis of automated trading agents. A new scenario in supply chain
management (TAC/SCM) debuted in 2003 [1]. We will not describe the scenario here,
but direct the reader to the game specification for details [2]. Studying the outcomes of
these competitions is a valuable exercise that helps us to better understand the strengths
and weaknesses of current approaches. Here we present and analyze results from the
final round of the 2004 tournament. Our primary objective is to determine the impor-
tant behavioral factors that distinguished the agents and contributed to their relative
performance.

We start by presenting the main results from the 2004 finals. In Section 3 we consider
procurement strategies. We discuss the role of strategic early procurement, and present
new experimental analysis of the effect of the rule changes on early procurement. A
novel blocking strategy was used in the final round, and we discuss the problems this
cause for some of the agents. In Section 4 we consider the PC sales market. Agents had
widely varying average selling prices (ASPs) for PCs, and this was a deciding factor
between the top three agents. Further analysis identifies four factors strongly correlated
with market ASPs, and reveals that the agents differed in their ability to target profitable
markets. We conclude with a summary of the strengths and weaknesses of each agent.
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c© Springer-Verlag Berlin Heidelberg 2006
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Table 1. Average scores and breakdowns from the TAC-04/SCM final round (in millions of dol-
lars). Margin is the raw difference between revenue and supply costs.

Agent Score Revenue Supplies Margin Storage Penalty Interest
FreeAgent 10.28 99.06 -80.94 18.12 -7.14 0 -0.61
Mr.UMBC 8.65 94.14 -76.49 17.65 -8.39 0 -0.61
UMTac-04 6.52 83.59 -67.21 16.37 -8.97 0 -0.88
Botticelli 0.44 25.83 -23.74 2.09 -0.39 -1.16 0
Deep Maize -5.12 56.24 -48.32 7.92 -9.59 -2.49 -0.95
SouthamptonSCM -10.41 71.37 -69.25 2.12 -11.34 0 -1.20

2 2004 Final Round Results

The 2004 competition started with qualifying and seeding rounds lasting two weeks
each; these rounds were used primarily for development and testing. The top 24 agents
participated in a three day tournament at AAMAS-04. A quarterfinal round eliminated
12 agents and a semi-final round eliminated 6 more. The surviving 6 agents played 14
games in the final round. Here we focus on analyzing the results of the final round, as
it represents direct competition between the strongest agents. In Table 1 we see that
the top three agents were very close, with scores in a narrow range of $4M. These
agents had much higher raw margins than the bottom three agents, and generally higher
transaction volume. Among the top three, small differences in storage costs and raw
margins determined the ordering. SouthamptonSCM had supply volume comparable
to the top finishers, but high storage costs and low revenue indicate possible sales prob-
lems. Botticelli and Deep Maize both transacted substantially less volume than the top
finishers.

3 Agent Procurement in Supplier Markets

3.1 A History of Early Procurement

Understanding the market for PC components TAC-04/SCM is aided by discussion of
results from the first competition. During the early rounds of the 2003 competition
agent designers noticed that there were strong incentives to procure large quantities of
components on the very first day of the simulation, day 0.1 By the end of the seed-
ing rounds most agents were making very large component purchases at the start of the
game, before any information about customer demand was available. In games with low
demand this could lead to large losses for all agents, as in one semi-final heat where all
agents purchased aggressively and finished with negative average profits. In the other
semi-final heat and the final round, Deep Maize surprised the field with a novel pre-
emptive strategy that blocked the other agents from making large day-0 purchases.2

1 Available supplier capacity was at a maximum, and prices were at a minimum.
2 Essentially, the agent requested most of the supplier capacity for the entire game and the sup-

pliers reserved it until the next day. Any requests considered after this request generated useless
offers. The agent accepted a partial quantity from this request.
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Post-tournament analysis showed that aggressive early procurement was a rational strat-
egy despite the potential for negative profits, but that the presence of a preemptive agent
could potentially improve profits for the entire field by knocking the agents out of the
undesirable equilibrium [3].

While these strategic interactions were interesting, the extreme emphasis on early
procurement detracted from other research problems, including factory scheduling [4],
optimizing customer bids [5], and dynamically managing inventory in response to new
information. The random order in which suppliers considered requests also introduced
a “lottery effect,” where these random outcomes had a strong effect on the overall out-
come of the game [6]. Several changes were made to the specification for the 2004
competition; these were intended to reduce the incentives for day-0 procurement. The
changes included modifications to the supplier pricing policy, segmentation of the cus-
tomer markets, and the addition of storage costs.

3.2 Early Procurement in TAC-04/SCM

During the TAC-04/SCM qualifying round day-0 procurement remained very high, de-
spite the rule changes. In response, the GameMaster increased storage costs fivefold for
the remaining rounds. Even this did not dampen the day-0 purchasing; the number of
components ordered based on day-0 requests actually increased by 14% from 2003 to
2004 (in games with no blocking strategies). This sequence of events raises questions
about the impact of the rule changes (especially storage costs) on agent behavior. Do
higher storage costs actually reduce incentives for early procurement, as suggested by
intuitive arguments? Was the high level of early procurement observed in TAC-04/SCM
a rational response to the new rules? Could any level of storage costs have reduced day-
0 procurement to an acceptable level?

We address these questions with a systematic exploration of the relationship be-
tween storage costs and day-0 procurement. Conceptually, each setting of storage costs
induces a different game between the agents. Game theory suggests that stable pro-
files (e.g. Nash equilibria) are likely to be played when rational, self-interested agents
compete in games. In general, we model the strategic interactions between a mecha-
nism designer and participants as a two-stage game. The designer moves first by setting
the mechanism parameter θ (e.g. storage costs), and all the participants observe θ and
move simultaneously thereafter (e.g. selecting a day-0 procurement quantity). We refer
to game between the participants in the second stage as the game Γθ induced by θ:

Γθ = [I, {Si}, {ui(s, θ)}].
Here I is the set of participants, Si the set of strategies for each participant, and ui(·)
the utility function for each participant. Suppose the goal of the designer is to optimize
some welfare function W (·). Let {s∗(θ)} be the set of Nash equilibria of Γθ . Here we
define W (s∗(θ), θ) = inf{W (s, θ) : s ∈ {s∗(θ)}}. Alternatively, if one has a probabil-
ity distribution over the Nash equilibria given θ, it may be natural to take the expectation
of W instead: W (s∗(θ), θ) = Es∈s∗ [W (s, θ)].3 If there are no Nash equilibria of Γθ (a

3 For example, such a distribution could be derived from analysis of evolutionary dynamics, as
in [7].
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possibility for infinite games), let s̄∗ be the set of strategy profiles with the lowest ben-
efit to deviation for any agent and define W (s∗(θ), θ) = inf{W (s, θ) : s ∈ {s̄∗(θ)}}.
The designer’s optimization problem is then

max
θ∈Θ

W (s∗(θ), θ).

To analyze the effect of storage costs in the TAC/SCM game we consider the cor-
respondence between storage costs and equilibrium outcomes. The aggregate quantity
of day-0 procurement in these stable profiles yields an estimate of the behavior we
would expect to see in actual games. In the TAC/SCM domain, the designer’s problem
is to minimize aggregate day-0 procurement. In the notation above, the designer maxi-
mizes W (s∗(θ), θ), defined by I{sup{φ(s∗(θ))} ≤ α}, where the aggregation function
φ(s) =

∑6
i=1 si, si is each agent’s day-0 procurement choice, and α is a desired cap

on aggregate day-0 procurement.
The full strategy space in TAC/SCM is very complex, but for the purposes of this

analysis we define a restricted space that allows agent to select only day-0 purchase
quantity multiplier. We implemented this strategy space by parameterizing our tour-
nament agent, Deep Maize, with a multiplier on its day-0 requests.4 Players select a
multiplier from the set {0, 0.3, 0.6, . . . , 1.5}. This strategy space defines the induced
game Γθ . The payoffs for this game are not directly known, but we can obtain estimates
by simulating games on the TAC server. We must do this for each setting of storage costs
we wish to investigate, and collecting the samples is very time-consuming. Fortunately,
the questions we would like to answer are high-level and we can gather evidence about
them using approximate methods. Instead of requiring exact equilibrium solutions, we
aim to find regions of the profile space that are likely to be stable using the notion of ε-
Nash equilibrium, where agents cannot gain more than a small benefit ε by deviating to
a different strategy. We also use two different techniques to approximate sets of stable
profiles without sampling the full profile space.

The first method approximates payoff functions of the game using supervised learn-
ing. We tried three different learning techniques from those introduced in [8]: quadratic
regression (QR), locally weighted average (LWA), and locally weighted linear regres-
sion (LWLR). For quadratic regression, it is possible to directly compute equilibria of
the learned game analytically. For the other methods, we applied replicator dynam-
ics [9] to a discrete approximation of the learned game. The second method uses di-
rected search to find stable profiles. Given a partial game matrix we can compute a
bound on the epsilon for each profile that we have sample data for; this bound is the
maximum benefit for deviating to any profile in the data set. The current set of profiles
with the best ε-bounds is the set of candidate equilibria. We employed a “best-first”
search that always samples unexplored deviations from a candidate equilibria. The idea
is to confirm or refute the stability of promising individual profiles without requiring the
full game matrix to be sampled. A limitation of this approach is that it cannot rule out
the existence of additional equilibria in the set of profiles that have not been sampled.

We gathered data for storage costs in the set {0, 50, 100, 150, 200}. An initial data
set was generated by sampling 10 randomly generated profiles for each storage cost

4 Deep Maize requested a total of 11800 components for each combination of supplier and
product, spread out over different due dates.
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Fig. 1. Profile data for storage costs of 100% annually. The plot shows the ε-bound for explored
profiles against the aggregate level of day-0 purchasing (per supplier/component) for all strategies
in the profile. The dark box represents the region for which there are known profiles with ε-bounds
less than $2.5M.

setting (playing 5–10 games for each profile). We then performed 12–32 iterations of
the best-first search procedure for each setting of storage cost. We ran a total of 2670
games over 6 months, exploring approximately 10% of the total profile space for these
discrete parameter and strategy settings.

Figure 1 shows a plot of the data for annual storage costs of 100% (the mean storage
cost setting from the 2004 tournament). Each point represents the ε-bound for a sam-
pled profile, plotted against the aggregate day-0 procurement in the profile. To calibrate,
a total procurement of 35400 (total multiplier 3.0) corresponds to an expected commit-
ment of approximately 1/3 of the total supplier capacity for the entire game. Note that
many different profiles have the same aggregate procurement. The dark box shows the
region with the most stable (lowest-ε) profiles. This region yields a predicted range for
the total day-0 procurement induced by this storage cost setting.

Figure 2 shows results for a range of settings of the storage cost parameter. The
SearchMin and SearchMax lines correspond to the endpoints of the region defined like
the gray region in Figure 1. The other three lines indicate approximate equilibria found
by the three learning methods, trained on the initial 10 randomly-generated profiles for
each storage cost setting. It is encouraging that the results obtained using very differ-
ent methods (learning and directed search) have the same qualitative structure. This
experimental evidence supports the initial intuition that day-0 procurement should de-
crease with higher storage costs; all of the methods show this relationship. There is
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Fig. 2. Several different estimates for the correspondence between storage costs and aggregate
day-0 purchases in equilibrium. Estimates from three learning methods are shown, along with an
interval estimate from the best-first search algorithm. SearchMin is the minimum day-0 level for
a profile with ε-bound less than 2.5M, and SearchMax is the corresponding maximum.

also evidence that high levels of day-0 procurement were a rational response by agents
to the new specification. The minimum prediction of any method for the storage cost
setting used in the final round was approximately 38000, and the maximum was consid-
erably higher at approximately 60000. The observed levels during the tournament were
somewhat above even the high estimate given by our methods, but it seems clear that
undesirably high levels of early purchasing are rational.

We also considered whether any setting of storage costs could have resulted in a de-
sirable outcome for day-0 purchasing. To test this, we attempted to find a setting that
would yield equilibrium outcomes with aggregate procurement less than 23600 (still
higher than we would want in practice). Linear extrapolation of the SearchMax line
predicts that this should occur for a storage cost setting of 320%. However, further sim-
ulations resulted in an estimated outcome range of 31860-38940 for this profile, only
slightly lower than the estimates for storage costs of 200%. There appears to be very
little benefit to additional increases of storage costs beyond 200%. Furthermore, agent
profits were almost always negative for storage costs of 320%, so additional increases
would be undesirable even if day-0 procurement could eventually be reduced to accept-
able levels.

Our analysis suggests that the changes to the game rules did have the desired effect to
some extent, but that this effect was not as large as anticipated. In games as complex as
TAC/SCM it is very difficult to asses the effects of potential rule changes. In principle,
the techniques used here provide ways of gathering additional data to assess the impact
of design decisions in games with important strategic interactions.
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Table 2. A breakdown of the percentages of CPU and non-CPU components ordered in response
to requests sent on days 0, 1, and 2+, with respect to the total quantity ordered by each agent

Agent CPU 0 CPU 1 CPU 2+ Other 0 Other 1 Other 2+
FreeAgent 0.61 0.05 0.34 0 0.05 0.95
Mr.UMBC 0.57 0.16 0.27 0.29 0.47 0.24
UMTac-04 0.85 0.15 0.00 0.39 0.60 0.01
Botticelli 0 0 1 0 0 1
Deep Maize 0.90 0.01 0.09 0.46 0.02 0.52
SouthamptonSCM 0.81 0 0.19 0.54 0.38 0.07

3.3 A Blocking Strategy in TAC-04/SCM

The overall levels of day-0 procurement observed in TAC-04/SCM were similar to those
observed in 2003, so it is perhaps not surprising that a blocking strategy again proved
pivotal in the final round. However, the specific preemptive tactic employed by Deep
Maize in 2003 was no longer useful due to changes in the supplier’s pricing formula.
The Deep Maize preemptive strategy relied on accepting partial fulfillment offers at
low prices to purchase some cheap components on day 0, while still blocking some of
the opponent’s requests. In the 2004 rules these partial offers have very high prices, so a
blocking agent must either pay high prices or try to purchase components later, despite
a bad reputation with suppliers.

Blocking and purchasing later is a somewhat risky strategy, but FreeAgent used this
tactic in the final round. 5 The strategy had a novel twist that mitigated some of the
risks: FreeAgent only blocked requests for non-CPU components and purchased large
quantities of CPU components on day 0 along with the other agents. This is signifi-
cant because CPUs cost much more than any of the other components (on average, the
CPU represents half of the total cost of components for a PC). The strategy locked in
relatively low prices for the components with the highest base prices, but risked pay-
ing relatively higher prices for the cheaper components in order to disrupt the other
agents’ procurement strategies. Table 2 illustrates the effect of this blocking strategy
on the distribution of purchases over the game for each agent. Most of the agents, in-
cluding FreeAgent, procured the majority of their CPU components on day 0 to take
advantage of the low prices. FreeAgent used its requests for “other” (non-CPU) com-
ponents on day 0 to block opponents’ requests. Consequently, it ordered no compo-
nents of these types on day 0, and the quantities purchased by the other agents were
reduced.

One of the crucial disparities between the agents was how they reacted to the new
market environment created by FreeAgent’s blocking strategy. Mr.UMBC, UMTac-
04, and SouthamptonSCM had backup strategies that procured large quantities of
components again on the next simulation day. Since most of the supplier capacity was
uncommitted at this point, the agents secured reasonably low prices for these backup

5 Mr.UMBC also submitted large blocking requests for some types non-CPU components. How-
ever, these RFQs were relatively low in the priority ordering assigned by the agent and likely
did not come into play.
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Table 3. Average total quantities ordered and prices paid for components

Agent Ordered CPU Price Other Price
FreeAgent 40199 0.60 0.88
Mr.UMBC 42557 0.61 0.71
UMTac-04 40738 0.56 0.61
Botticelli 11598 0.74 0.70
Deep Maize 26902 0.58 0.65
SouthamptonSCM 39350 0.58 0.71

Table 4. Inventory management statistics. CPU/Other is the ratio of CPUs ordered to the number
of other components ordered. The ratio needed to produce PCs is 0.33 (1 CPU:3 Other).

Agent CPU/Other Unsold CPU Unsold Other Daily Inv. Ave. Delivery Day
FreeAgent 0.34 3516 5956 30677 95
Mr.UMBC 0.31 713 15769 48877 85
UMTac-04 0.33 1832 2588 41975 94
Botticelli 0.33 475 1497 1317 160
Deep Maize 0.40 12153 10200 31026 88
SouthamptonSCM 0.33 13651 43922 67147 69

orders and were in much the same situation as if they had ordered all of their compo-
nents on day 0 as originally planned. Botticelli made large day-0 requests like the rest
of the agents, but chose not to accept any of the offers and waited until much later in
the game to purchase supplies and start production. FreeAgent and Deep Maize did
not come back with large requests immediately, but purchased additional components
in smaller chunks throughout the rest of the game.

Additional details about overall procurement and pricing are in Table 3. Four of the
agents (including the top three) purchased approximately the same number of compo-
nents overall; Botticelli and Deep Maize purchased significantly fewer components.
Prices paid for CPUs are comparable for all agents except Botticelli, which did not pro-
cure any cheap CPUs on day 0. The prices paid for non-CPU components show more
disparity. UMTac-04 paid the lowest prices due to a large day-1 purchase. FreeAgent
paid very high prices for non-CPU components. This stands in contrast to the much
lower prices paid by Deep Maize, despite the similar approach these agents took in
purchasing additional inventory over the duration of the game. FreeAgent seems to
have disregarded the prices paid for these components, in part to compensate for its
strategic maneuver on day 0.

3.4 Inventory Management

Agents’ procurement strategies had important implications for inventory management.
The two lowest-scoring agents in particular were crippled by difficulties in managing
inventory that are at least partially attributable to FreeAgent’s blocking tactic. There
are a number of striking numbers in table 4, which lists inventory management statis-
tics. The first is Botticelli’s very late average delivery date for components. This agent
effectively sat out most of the game after declining early component purchases. Equally
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Fig. 3. The average cumulative difference between components delivered and components that
could potentially be assembled into finished PCs for each agent. High differences indicate that
the agent is missing one or more complementary components (e.g. the agent has no memory
components). The ordering in the legend is the same as the visual ordering in the plot.

striking are the very large unsold inventories held by Deep Maize and Southampton-
SCM at the end of the game. Mr.UMBC also had a substantial unsold inventory, but this
inventory was almost exclusively composed of much cheaper non-CPU components.

Figure 3 gives a more detailed breakdown of inventory management over the course
of the game. The plot shows the difference between the number of components deliv-
ered and the number that could possibly be assembled for sale, emphasizing manage-
ment of the complementarities between components. The bulk of the unsold inventories
could not have been sold due to not having the right combinations of components. The
unsold inventory problem was not very severe for Mr.UMBC since it was composed of
cheaper components; this may actually have been a deliberate hedge against production
down time.

Deep Maize and SouthamptonSCM both purchased large quantities of some com-
ponents, but had difficulties obtaining enough complementary components to allow full
production. SouthamptonSCM had large differences in the orders it placed early on,
and did not compensate for these disparities later in the game. The imbalances for
Deep Maize were not quite as large as those for SouthamptonSCM, and it was able
to mitigate them to some extent by procuring additional components throughout the
game. However, the agent was very selective about the prices paid for these additional
components (note the low price paid for non-CPUs from Table 3). That FreeAgent
was very successful with a similar strategy that paid much higher prices for these
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Fig. 4. Market share in the SCM finals

components suggests that Deep Maize was probably too selective about prices for
certain key components.

A final point about inventory management is that FreeAgent had a substantially
lower average daily inventory than the next two agents, despite comparable overall
quantities purchased. This appears to be the result of ordering non-CPU inventory over
many days, which allowed the agent to divide quantities into more requests and dis-
tribute them move evenly over time. This gave FreeAgent some advantage in storage
costs over these two agents, and helped to offset the higher prices paid by the agent for
non-CPU components.

4 Agent Sales Behavior

4.1 Basic Sales Data

We now attend to activity in the PC sales market, starting with overall market share
in Figure 4 (raw sales numbers are listed in Table 5). Market shares mostly parallel
the total quantities of components ordered, as given in Table 3. The major exception is
SouthamptonSCM, which purchased similar quantities to the top three agents but took
a much smaller share of the customer market. This reflects the large amount of unsold
inventory for this agent noted in the previous section. We also note that almost 40% of
the total customer demand was unmet. Some of this is unavoidable since agents must
build inventory at the start of the game before they can sell PCs. However, there does
seem to be significant opportunity for agents to expand market share by filling unmet
demand.

More detailed information on sales activity is given in Table 5. The top three agents
sold very nearly the same number of PCs, and won an almost identical fraction of
their bids. However, they had strikingly different average selling prices (ASPs). This
difference in ASPs is one of the major reasons that the three agents finished in the order
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Table 5. Customer sales statistics for each agent

Agent PCs sold PCs bid on Percent Won ASP
FreeAgent 54660 166293 0.33 0.90
Mr.UMBC 56748 172517 0.33 0.83
UMTac-04 56341 167746 0.34 0.74
Botticelli 17290 28581 0.60 0.81
Deep Maize 33166 124485 0.27 0.92
SouthamptonSCM 41798 93936 0.44 0.85

they did. That the three agents bid on almost identical fractions of the market and win
similar fractions of bids suggests that this difference in ASPs is due to targeting different
types of markets. Deep Maize had the highest ASP of any agent and the lowest winning
percentage, suggesting that this agent made systematically higher offers to customers.
Conversely, Botticelli won a very high fraction of its bids with a relatively low ASP,
suggesting systematically lower bids. SouthamptonSCM won a high fraction of bids
with mid-range ASPs, but bid on a much smaller fraction of the market than the other
three agents with similar component purchases.

4.2 Market Behavior

To better understand why the agents had different ASPs, we consider features that dif-
ferentiate markets along the dimension of ASP. For this analysis we consider a “market”
to be the set of customer requests for a PC type on a simulation day. We identify four
factors that are strongly correlated with overall market ASPs. Figure 5 shows these rela-
tionships as scatter plots, with superimposed lines representing binned averages. Except
for simulation day, all of these factors are measures of supply and demand motivated by
basic economic principles. The simulation day is important primarily due to start- and
end-game effects.

Plot 5(a) shows the relationship between prices and simulation day. Prices start very
high early in the game as agents build inventory and decrease over time. At the end
of the game prices can fall very low as agents try to recover some value for excess
inventory. The second factor, shown in 5(b), is market demand (i.e., total quantity re-
quested). Prices increase as demand increases, with any demand level less than 100
occasionally subject to very low ASPs. Plot 5(c) is a measure of bid density calculated
this by summing the number of bids for each individual PC and dividing by the total
number of PCs requested. ASPs fall approximately linearly as bid density increases.
ASPs also fall approximately linearly as manufacturer PC inventory increases, as seen
in 5(d).

We ran linear regressions to test the strength of these relationships with ASPs (all
of the plots suggest a linear relationship, so this is a reasonably approximation). The
individual R2 values were 0.29 for simulation day, 0.13 for market demand, 0.42 for
bid density, and 0.44 for PC inventory. A multiple regression using all four factors
yields an R2 value of 0.65, with all coefficients significantly different from 0. We could
certainly improve this model by considering additional factors (e.g. reserve prices, lead
times, smoothed market demand). However, a simple linear fit to these four variables is
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Fig. 5. Plots showing the relationships between four variables and market ASPs in SCM-04.
10000 randomly selected points are shown for each variable (out of approximately 45000 to-
tal). The dark lines on each plot are the average ASPs at each value for discrete variables or
within small bins for continuous variables.

sufficient to explain 65% of the variance in ASPs. This surprisingly powerful result that
speaks to the power of the basic forces of supply and demand in the SCM markets.

We take this analysis a step further by considering the features of the markets that
individual agents bid and sold PCs in. Table 6 gives average values for each of these four
factors for each of the PCs sold and PCs bid on by each agent. The two agents with the
highest ASPs were Deep Maize and FreeAgent. These agents sold PCs earlier in the
game, in markets with the lowest PC inventory, highest demand, and low bid densities;
all of these are associated with high market ASPs. UMTac-04 had the lowest ASP by
a wide margin. This agent sold later than most agents in markets with low demand and
high PC inventory levels; all of these are associated with low market ASPs. The other
agents have mid-range ASPs, and seem to have a mix of factors working for and against
them. For instance, SouthamptonSCM sells exceptionally early, but in lower demand
markets with relatively high inventory levels.

5 Conclusions: Agent Performance

We have presented and analyzed data on many aspects of the TAC-04/SCM final round,
which has revealed interesting details about the different strategies employed by the
agents. We can now offer a reasonably compelling explanation for why the agents fin-
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Table 6. Average values of four factors correlated with market ASPs given for the PCs each agent
won and bid on. Day is the simulation day, Demand is market demand, Bids is the bid density
(defined in text), and PC inv is average manufacturer PC inventory.

Agent Sold, Day Bid, Day Sold, Demand Bid, Demand
FreeAgent 122 130 160 147
Mr.UMBC 124 129 150 148
UMTac-04 135 126 143 140
Botticelli 163 164 153 146
Deep Maize 122 123 168 158
SouthamptonSCM 105 112 143 136

Agent Sold, Bids Bid, Bids Sold, PC Inv Bid, PC Inv
FreeAgent 2.89 3.39 588 832
Mr.UMBC 2.58 3.26 761 813
UMTac-04 2.90 3.48 933 925
Botticelli 3.75 3.99 730 822
Deep Maize 2.40 3.35 551 675
SouthamptonSCM 3.38 3.71 836 939

ished in the order they did. The following is a brief synopsis of the important points
about each agent, starting from the lowest-scoring agent and working up.

SouthamptonSCM bought far more components than it sold, leaving it with large
amounts of unsold inventory and high storage costs. The agent had reasonably high
ASPs and winning percentages in the customer market, but bid on a very low fraction
of customer orders. The underlying problem was that the agent was not successful at
getting all of the complementary components needed for production of finished prod-
ucts.

Deep Maize had very high ASPs in the customer market. However, it also had in-
ventory management problems with complementary components. The agent was often
left with insufficient non-CPU inventory to manufacture and sell aggressively, and had
large numbers of unsold CPU components. The agent paid low average prices for non-
CPU components, so it may have been too selective about prices for these components.

Botticelli did not make any supply purchases at the start of the game, and did not
enter the market substantially until very late in the game. By this time there was too
little time remaining in the game and the customer market was too competitive to allow
for large profits.

UMTac-04 compared favorably to FreeAgent on virtually every metric we consid-
ered except average daily inventory and customer market ASP. This agent had the lowest
ASP of any agent. It sold later in the game in markets with relatively low demand, high
PC inventory; all of these factors correlate with low market prices.

Mr UMBC had a better ASP than UMTac-04, but lower than FreeAgent. It sold
in lower demand and higher inventory markets than FreeAgent. This agent also had a
sizable amount of non-CPU inventory unsold at the end of the game and higher daily
inventories than FreeAgent.

FreeAgent made some interesting strategic choices for the final round. It opted to
block other agents only on non-CPU inventory, while acquiring CPUs at low prices on
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day 0. It then purchased additional components at very high prices during the rest of
the game. It was able to compensate to some extent for these high prices through more
evenly spaced deliveries of components and lower resulting storage costs. The major
strength of this agent compared to the others was an ability to consistently sell high
volumes of PCs throughout game at high prices by targeting profitable markets.
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Abstract. We present methods for an autonomous agent to identify dominant
market conditions, such as over-supply or scarcity, and to forecast market changes.
We show that market conditions can be characterized by distinguishable statisti-
cal patterns that can be learned from historic data and used, together with real-
time observable information, to identify the current market regime and to forecast
market changes. We use a Gaussian Mixture Model to represent the probabilities
of market prices and, by clustering these probabilities, we identify different eco-
nomic regimes. We show that the regimes so identified have properties that corre-
late with market factors that are not directly observable. We then present methods
to predict regime changes. We validate our methods by presenting experimental
results obtained with data from the Trading Agent Competition for Supply Chain
Management.

1 Introduction

In the Trading Agent Competition for Supply-Chain Management [1] (TAC SCM), six
autonomous agents attempt to maximize profit by selling personal computers they as-
semble from parts, which they must buy from suppliers. The agent with the highest bank
balance at the end of the game wins. Availability of parts and demand for computers
varies randomly through the game and across three market segments (low, medium, and
high computer prices). The market segments are affected not only by the random vari-
ations in supply and demand, but also by the actions of other agents. The small number
of agents and their ability to adapt and to change strategy during the game makes the
game highly dynamic and uncertain.

During the competition, an agent has to make many operational and strategic deci-
sions, ranging from how many parts to buy, to when to get the parts delivered, how to
schedule its factory production, what types of computers to build, when to sell them,
and at what price.

The problem we address in this paper is how an agent can detect and exploit market
conditions, such as oversupply or scarcity of products. We show that market conditions
can be characterized by distinguishable statistical patterns, that we call regimes, we
show how such patterns can be learned off-line from historical data, how they can be
identified on-line during the game, and how future regimes and times of regime transi-
tions can be forecast during the game.

H. La Poutré, N. Sadeh, and S. Janson (Eds.): AMEC and TADA 2005, LNAI 3937, pp. 113–125, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The long term objective of our work is to show how knowledge of current and antic-
ipated market conditions enables an agent to make better decisions. While this type of
prediction about the economic environment is commonly used at the macro economic
level, such predictions are rarely done for a micro economic environment.

2 Economic Regime Identification

To give an intuition of how prices for the same type of computer change during the
game, we show in Figure 1 the probability of receiving an order for a given offer price
for computers of type 1 during one of the games played in the finals of TAC SCM 2004.
We can see how the slope of the curve and its position change over time. According
to economic theory high prices and a steep slope correspond to a situation of scarcity,
where price elasticity is small, while a less steep slope corresponds to a balanced market
where the range of prices is larger.
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Fig. 1. Game 1189@tac4 (Final TAC SCM 04) – Probability of order for computer type 1 by
offer price. The plot shows the curves every 20 days during the game.

Clearly market conditions change during the game, and this should affect the strategy
of the agent. When there is scarcity, prices are higher, so the agent should price aggres-
sively. In balanced situations, prices are lower and have more spread, so the agent has
a range of options for maximizing expected profit. In over-supply situations prices are
lower. The agent should primarily control costs, and therefore either do pricing based
on costs, or wait for better market conditions.

Since supply and demand in TAC SCM change in each of the market segments (low,
medium, and high computer prices) independently of the other segments, our consider-
ations are to be applied to each individual market segment.
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3 Off-Line Analysis of Data

The first step in our approach is to identify and characterize market regimes by ana-
lyzing off-line data from previous games. The agent will use these results along with
real-time observable information to identify regimes during the game, forecast regime
transitions, and adapt its procurement, production, and pricing strategy accordingly.

For our experiments, we used data from a set of 26 games played during the semi-
finals and finals of TAC SCM 2004. The number of games played was 30, but we left out
the games where some computers were sold for $0. The mix of players changed from
game to game, the total number of players was 12 in the semi-finals and 6 in the finals.
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Fig. 2. The Gaussian mixture model for the low market segment. Data are from 26 games from
finals and semi-finals of TAC SCM 2004.

Each computer type has a different nominal price, which is the sum of the nominal
cost of each of the parts needed to build it. We normalize the prices across the different
computer types in each market segment. We call np the normalized price.

We define regimes with the help of a Gaussian mixture model (GMM). We apply the
EM-Algorithm [2] to determine the Gaussian components of the GMM, N [µi, σi](np),
and their prior probability, P (ci). The density of the normalized price can be written as:

p(np) =
N∑

i=1

p(np|ci)P (ci) (1)

where p(np|ci) is the i-th Gaussian from the GMM. An example of the Gaussians is
shown in Figure 2. For our experiments we chose N = 3, because we found experimen-
tally that this provides a good balance between quality of approximation and simplicity
of processing.
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Using Bayes’ rule we determine the posterior probability:

P (ci|np) =
p(np|ci)P (ci)∑N
i=1 p(np|ci)P (ci)

∀i = 1, · · · , N (2)

We then define the N-dimensional vector, whose components are the posterior proba-
bilities from the GMM,

η(np) = [P (c1|np), P (c2|np), . . . , P (cN |np)] (3)

and for each normalized price npj we compute η(npj) which is η evaluated at the npj

price. We cluster these collections of vectors using k-means. The center of each cluster
corresponds to regime Rk for k = 1, · · · , M , where M is the number of regimes.

Figure 3 shows the cluster centers, which correspond to regimes, for the low market
segment. The figure shows only some of sample points for better visualization.
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Fig. 3. K-means clustering applied to the posterior probability P (c|np) in the low market segment

We distinguish three regimes, namely over-supply (R1), balanced (R2), and scarcity
(R3). Regime R1 represents a situation where there is a glut in the market, i.e. an over-
supply situation, which depresses prices. Regime R2 represents a balanced market sit-
uation, where most of the demand is satisfied. In regime R2 the agent has a range
of options of price vs sales volume. Regime R3 represents a situation where there is
scarcity of products in the market, which increases prices. In this case the agent should
price close to the customer reserve price – the maximum price a customer is willing to
pay.

The number of regimes was selected a priori, after examining the data and looking
at economic analyses of market situations. Both the computation of the GMM and k-
means clustering were tried with different initial conditions, but consistently converged
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to the same results. Correlation analysis (see, later, Figure 8) shows that regimes can be
characterized in terms of market quantities, such as prices and ratio of offer to demand.

We can rewrite p(np|ci) in a form that shows the dependence of the normalized price
np not on the Gaussian ci of the GMM, but on the regime Rk:

P (np|Rk) =
N∑

i=1

p(np|ci)P (ci|Rk). (4)

The probability of regime Rk dependent on the normalized price np can be computed
using Bayes rule as:

P (Rk|np) =
P (np|Rk)P (Rk)∑M

k=1 P (np|Rk)P (Rk)
∀k = 1, · · · , M. (5)

where M is the number of regimes, which in our case is 3. The prior probabilities
P (Rk) of the different regimes are determined by a counting process over multiple
games.
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Fig. 4. Regime probabilities over normalized price for the low (left), medium (middle) and high
(right) market segments. These are computed off-line from 26 games.

Figure 4 depicts the regime probabilities for the three market segments. Each regime
is clearly dominant over a range of normalized prices. To make things more intuitive, we
label regime R1 as O for over-supply, regime R2 as B for balanced, and regime R3 as
S for scarcity. The relative dominance and range of the different regimes varies among
the market segments, but we can see, as expected, that oversupply corresponds to lower
prices, a balanced situation to prices closer to the average, and scarcity to high prices.
We assume this reflects different agent pricing and inventory-management strategies.
The high market segment offers higher profit per computer, hence the balanced regime
extends over a larger range of normalized prices. In the low market segment the profit
per computer is low, hence the balanced regime extends over a much smaller range of
normalized prices.

The intuition behind regimes is that prices communicate information about future
expectations of the market. However, absolute prices do not mean much because the
same price point can be achieved in a static mode (i.e., when prices don’t deviate),
or when prices are in ascent, or when prices are in descent. The variation of prices
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(the nature, variance, and the neighborhood) defines the regime. A regime captures a
somewhat medium term mood in the market by looking at price and volume tradeoffs.
A price point does not consider its neighborhood, an idea that regimes capture.

4 Online Identification of Current Regime

During the game, the agent can estimate every day the current regime by calculating
the mean normalized price npday for the day and by selecting the regime which has the
highest probability, i.e. argmax1≤k≤M P (Rk|npday).
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Fig. 5. Game 1189@tac4 (Final TAC SCM 04) – Minimum and maximum daily prices of com-
puters sold, as reported during the game every day, and mean price. If nothing was sold in the
market on a given day then the prices shown are below zero. The mean price is computed after
the game using the game data, which include complete information on all the transactions.

Unfortunately, this is not simple, since the agent has only limited market information
during the game. Every day the agent receives a report which includes the minimum
and maximum prices of the computers sold the day before, but not the quantities sold.
Using these reports, the agent can compute the mid-range of the normalized price of the
computers sold the previous day. The mid-range is an estimate of the mean price, but
not always a good one since the quantity of computers sold is not known. An example
that shows how the mean differs from the mid-range value is shown in Figure 5.

The mid-range price can be used to identify the corresponding regime online, as
shown in Figure 6 (left). The data are from game 1189@tac4, which was not in the
training set of games used to develop the regime definitions. The middle and right parts
of Figure 6 show respectively the probability of receiving an order in a balanced and in
a scarcity situation for different prices. Scarcity typically occurs early in the game and
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Fig. 6. Game 1189@tac4 (Final TAC SCM 04) – Regimes over time for the low market computed
online every day (left), probability of receiving an order by normalized price for a balanced
situation (R2 indicated by B) (middle) and for a scarcity situation (R3 indicated by S) (right).

at other times when supply is low. These probabilities are computed from past game
data for each regime.

Eventual errors in regime identification can be corrected every 20 days when the
agent receives a market report which includes the mean price of each of the computer
types sold since the last market report. At that point, if needed, the agent can correct its
current regime identification.
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Fig. 7. Game 1189@tac4 (Final TAC SCM 04) – Relationships between regimes and normalized
prices in the low market. On the left axis, we show the available finished goods inventory of
all agents and the ratio of offer to demand (which ranges from 0 to 4.5), which is scaled to fit
between the minimum and maximum values of the finished goods inventory. On the right axis we
show the normalized prices. The dominant regimes are labeled along the top.
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Fig. 8. Game 1189@tac4 (Final TAC SCM 04) – Correlation coefficients between regimes and
day in the game, the ratio of offer to demand, normalized price (np), and quantity of finished
goods inventory in the low market segment

Figure 7 shows the quantity of the finished goods inventory (FG), the ratio of offer
to demand, which represents the proportion of the market demand that is satisfied, and
the normalized price (np) over time1.

The regimes identified by our approach are superimposed, where S (or R3) repre-
sents scarcity, B (or R2) balanced, and O (or R1) over-supply. These factors clearly
correlate with market regimes, but they are not directly visible to the agent during the
game. For example, the figure shows that when the offer to demand ratio is high (i.e.
over-supply) prices are low and vice versa. We can observe that the ratio of offer to de-
mand changes significantly during the game. For instance, on day 141 the ratio of offer
to demand is approximatively 1.4 and prices are high. On day 179 the ratio of offer to
demand is much higher, approximatively 4.5, and prices are lower. We can also observe
that prices tend to lag changes in ratio of offer to demand.

A correlation analysis of the market parameters is shown in Figure 8. The p-values
for the correlation analysis are all less than 0.01. Regime R1 (over-supply) correlates
strongly and positively with time, ratio of offer to demand, and quantity of finished
goods inventory, and negatively with normalized price. On the other hand, in Regime R3
(scarcity) we observe a strong negative correlation with the selected market parameters.

Figure 9 shows the relative probabilities of each regime over the course of a game.
The graph shows that different regimes are dominant at different points in the game,
and that there are brief intervals during which two regimes are almost equally likely.
An agent could use this information to decide which strategy, or mixture of strategies,
to follow.

1 The quantity of the finished goods inventory is affected by other factors, such as storage cost,
which have changed in the TAC SCM 2005 games. In 2005 games agents tend to build to order
and keep most of their inventory in the form of parts, not finished products.
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Fig. 9. Game 1189@tac4 (Final TAC SCM 04) – Regime probabilities over time computed online
every day for the low (left), medium (middle) and high (right) market segment
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Fig. 10. Game 1189@tac4 (Final TAC SCM 04) – Daily entropy values of the three regimes for
the low (left), medium (middle), and high (right) market segment

A measure of the confidence in the regime identification is the entropy of the set S of
probabilities of the regimes given the normalized mid-range price from the daily price
reports npday , where

S = {P (R1|npday), · · · , P (RM |npday)}
and

Entropy(S) ≡
M∑

k=1

−P (Rk|npday) log2 P (Rk|npday). (6)

An entropy value close to zero corresponds to a high confidence in the current regime
and an entropy value close to its maximum, i.e. for M regimes log2 M , indicates that
the current market situation is a mixture of M almost equally likely regimes. Examples
for the three market segments in game 1189@tac4 are shown in Figure 10.

5 Regime Prediction

The behavior of an agent should depend on the current market regime as well as expec-
tation of future regimes. This requires a way for the agent to predict future regimes and
when regime switches will occur.

We model regime prediction as a Markov process. We construct a Markov transition
matrix, Tpredict(rt+1|rt) off-line by a counting process over past games. This matrix
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represents the posterior probability of transitioning to a regime given the current regime.
To compute the Markov transition matrix, for each of the past games we compute the
mean normalized price every day, we then estimate the regime probabilities dependent
on that price, and we select the regime which has the maximum probability as the
regime for the given day.

The prediction of regime probabilities is based on two distinct operations: a correc-
tion (recursive Bayesian update) of the posterior probabilities for the regimes based on
the history of measurements of np obtained since the time of the last regime change,
t0, until the previous day, t− 1, P (rt−1|{npt0 , . . . ,npt−1}), and a subsequent predic-
tion of regime posterior probabilities for the current day, t, P (rt|{npt0 , . . . ,npt−1}.
Equation 7 describes a recursive computation for predicting the posterior distribution
of regimes at time t + n days into the future, where k = n + 1.

P (rt+k|{npt0 , . . . ,npt−1}) =∑
rt+k−1

· · ·
∑
rt−1

P (rt−1|{npt0 , . . . ,npt−1}) ·
k∏

j=1

Tpredict(rt+j |rt+j−1) (7)

We measure the accuracy of regime prediction using two separate values:

1. a count of how many times the regime predicted is the correct one,
2. a count of how many times the predicted day of the regime switch is correct. We

assume the prediction is correct when the regime switch prediction is -2/+2 days
from the correct day of change.

As ground truth we measure regime switches and their time off-line using data from
the game. We tested our approach on all 16 final games in the 2005 TAC SCM tourna-
ment. Starting with day 1 until day 199, we forecast every day the regimes for the next
20 days and we forecast when a regime transition would occur. Experimental results are
in Table 1.

The reason for limiting the prediction to 20 days is that every 20 days the agent
receives a report which includes the mean price of each of the computer types sold since
the last market report, and so it can correct, if needed, its current regime identification.

Table 1. Percent of correct predictions of future regime (using Markov model) and predictions
of time of regime change (using Semi-Markov model). We assume the prediction of the time
of change is correct if it is within -2/+2 days. For the number of regime changes we show the
average and standard deviation. Results shown are computed every day for the next 20 days from
day 1 to day 199 (for a total of 3184 trials).

low market medium market high market
avg/stdev avg/stdev avg/stdev

# regime changes 9.75/9.85 7.88/4.97 3.69/1.72
correct regime 73.87% 85.30% 97.83%
correct time 74.43% 74.18% 93.12%

We hypothesized that the time a regime switch occurs is not exponential (Markov),
i.e. the future depends not only on the present state, but also on the length of time the
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process has spent in that state. This requires modeling the regime transition as a semi-
Markov process [3].

To model this we modify the Markov transition matrix, Tpredict, to be a weighted sum
of two matrices, the steady state matrix Tsteady and the change matrix Tchange. Tsteady is
the M ×M identity matrix, where M is the number of regimes. Tchange is the Markov
transition matrix, which is computed off-line as described earlier.

Tpredict(rt+1|rt) = (1− ω(.))Tsteady + ω(.)Tchange(rt+1|rt) (8)

where ω(.) represents the probability of a regime change, and rt represents the current
regime. To compute the value of ω(.), we need to introduce a few variables. We define
∆t as the time since the last regime transition at t0: ∆t = t− t0. We model the time τi

spent in regime Ri before the transition to regime Rj occurs as a random variable with
distribution Fij . τi is estimated from historical data. We hypothesized that the probabil-
ity density of τi is dependent on the current regime, Ri, i.e. p(τi|Ri). We computed the
frequency of all values of τi in ascending order and fitted different distributions. The
Gamma distribution, g(t; α, λ) is a reasonable fit to the data.

The probability of a regime transition ω(r, ∆t) from the current regime, r, with
respect to the time ∆t that has elapsed since the last regime transition, t0, is given by:

ω(r = Ri, ∆t) =
∫ ∆t

0
p(∆t|r = Ri) d∆t (9)

where p(∆t|r = Ri) = g(∆t; αi, λi). Equation 10 describes a recursive computation
for predicting the posterior distribution of regimes at time t + n days into the future,
where k = n + 1, for the semi-Markov process.

P (rt+k|{npt0 , . . . ,npt−1}) = (10)∑
rt+k−1

· · ·
∑
rt−1

P (rt−1|{npt0 , . . . ,npt−1}) ·
k∏

j=1

Tpredict(rt+j |rt+j−1, ∆t + j − 1)

The second measure of success, correctness of prediction of the time of regime change,
which we obtained using the semi-Markov model, is shown in Table 1.

6 Related Work

Marketing research methods have been developed to understand the conditions for
growth in performance and the role that marketing actions can play to improve sales.
For instance, in [4], an analysis is presented on how in mature economic markets strate-
gic windows of change alternate with long periods of stability.

Model selection is the task of choosing a model of optimal complexity for the given
data. A good overview of concepts, theory and model selection methods is given in [5].

Much work has focused on models for rational decision-making in autonomous
agents. Ng and Russel [6] show that an agent’s decisions can be viewed as a set of
linear constraints on the space of possible utility (reward) functions. However, the sim-
ple reward structure they used in their experiments will not scale to what is needed to
predict prices in TAC SCM.
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Carmel and Markovitch [7] describe a game-player that tries to analyze and learn
the strategy of its opponent. They discuss the benefits of using a model of the opponent
strategy, and give an algorithm called M* (a generalization of the standard minimax al-
gorithm) that attempts to exploit the opponent strategy. M* assumes that the opponent’s
search depth and evaluation function are known, which is not the case in TAC SCM.

Chajewska, Koller, and Ormoneit [8] describe a method for predicting the future
decisions of an agent based on its past decisions. They learn the agent’s utility function
by observing its behavior. Their approach is based on the assumption that the agent
is a rational decision maker. According to decision theory, rational decision making
amounts to the maximization of the expected utility [9]. In TAC SCM, we cannot apply
these techniques because the behaviors of individual agents are not directly observable.

Sales strategies used in previous TAC SCM competitions have attempted to model the
probability of receiving an order for a given offer price, either by estimating the proba-
bility by linear interpolation from the minimum and maximum daily prices [10], or by
estimating the relationship between offer price and order probability with a linear cumu-
lative density function (CDF) [11], or by using a reverse CDF and factors such as quantity
and due date [12,13], or by letting other agents set the price and trying to follow [14].

All these methods fail to take into account market conditions that are not directly
observable. They are essentially regression models, and do not represent qualitative
differences in market conditions. Our method, in contrast, is able to detect and forecast
a broader range of market conditions.

Regression based approaches (including non-parametric variations) assume that the
functional form which defines the relationship between dependent and independent
variables has the same structure. However, as shown in Figure 1, these functional re-
lationships have a different structure for different regimes. Therefore, an approach that
does not assume a functional relationship maybe the best way to identify a regime.

Wellman et al. [15] demonstrate a method for predicting future customer demand
in the TAC SCM game environment, and use the predicted future demand to inform
agent behavior. Their approach is specific to the TAC SCM situation, since it depends
on knowing the formula by which customer demand is computed. Note that customer
demand is only one of the factors for characterizing the multi-dimensional regime pa-
rameter space.

7 Conclusions and Future Work

We have presented an approach to characterizing and predicting economic market con-
ditions in markets for durable goods. Our approach recognizes that different market
situations have qualitative differences that can be used to guide the strategic and tac-
tical behavior of an agent. Unlike regression-based methods that try to predict prices
directly from demand and other observable factors, our approach recognizes that prices
are also influenced by non-observable factors, such as the inventory positions of the
other agents. Unlike price-following methods, our approach promises to enable an agent
to anticipate and prepare for regime changes, for example by building up inventory in
anticipation of better prices in the future or by selling in anticipation of an upcoming
oversupply situation.
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We have demonstrated the effectiveness of our approach by characterizing the market
conditions in games played in the semi-finals and finals from TAC SCM 2004 and 2005.

Our next step is to complete the prediction of future regimes, to design and evaluate
sales strategies that take advantage of regime prediction, and to integrate them into the
decision making process of our agent. We believe that our proposed formulation will
allow the agent to operate effectively on a daily basis as well as to engage in strategic
pricing.
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Abstract. The Trading Agent Competition (TAC) is an open-invitation forum
designed to encourage research into electronic markets and trading agents. In this
paper we present the Socrates trading agent and the strategies that were developed
for and used in the TAC Supply Chain Management game as part of the 2004
competition. The resulting behaviour and performance in the TAC competition as
well as in a series of controlled experiments are discussed.

1 Introduction

In today’s highly interconnected and networked world more and more businesses and
organizations choose to do business online. This is a dynamic environment where man-
ufacturers may negotiate with suppliers on the one hand, while at the same time compete
for customer orders and have to arrange their production schedule and delivery so that
orders are delivered on time. The ability to respond to changes as they happen and adapt
to variations in customer demand and the restrictions as imposed by procurement, is of
paramount importance. This is the kind of environment that agent technology is best
suited for: dynamic, constrained and real-time. However, to be able to build agents that
offer solutions to problems such as supply chain management, we need to have a very
good understanding of the domain itself and the problems that arise in it. In particu-
lar, firstly we need to gain a better understanding of the problems that arise in supply
chain negotiation situations. Secondly, we need to explore strategies for coping in dy-
namic and competitive environments, and finally develop agent-based systems for an
automated supply chain process. Trial and error in a real environment carries very high
risks. To demonstrate the potential of applying agent technology in complex domains
like supply chain management, realistic testbeds are required that allow researchers
and practitioners to test out and evaluate ideas and techniques. The TAC Supply Chain
Management (SCM) game was designed to capture many of the dynamics of such an
environment and provides an ideal forum for researchers to test, evaluate and learn.

This paper presents the Socrates trading agent and the strategies that were used in
the TAC Supply Chain Management game in the 2004 competition. As a good strategy
for obtaining components was essential for a good overall performance in the game, we
decided to concentrate on this aspect of the agent. Socrates is a production-driven agent
that attempts to keep factory utilisation to the maximum for as long as possible during
the game. We present the problems that arise in dealing with the suppliers and the strate-
gies that were developed to tackle them. The rest of the paper is organized as follows.
The following section presents the TAC SCM game and a section describing related
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work follows. Next, the Socrates trading agent and the strategies that were developed
to deal in particular with the supplier problem are described. Following this, we present
the results of the competition as well as those of a series of controlled experiments. The
paper closes with the conclusions and pointers to future work.

2 The SCM Game

In the TAC SCM game six agents compete against each other in a 220-day game which
lasts 55 minutes in real time [1]. Each agent is a manufacturer which assembles PCs
from CPUs, motherboards, memories, and hard disks. CPUs and motherboards are
available in two different product families, Pintel and IMD. A Pintel CPU only works
with a Pintel motherboard while an IMD CPU can be incorporated only in an IMD
motherboard. CPUs are available in two speeds, 2.0 and 5.0 GHz, memories in sizes, 1
and 2 GB, and disks in sizes 300 and 500 GB. The ten different components can be com-
bined into sixteen different PC models. The agents need to procure these components
from eight different suppliers. On the other side, the agents need to secure customer
orders each day. Once an agent has received an order it needs to assemble the required
number and model of PCs in its factory and subsequently ship the finished products. All
agents start the game with no money in their bank accounts, no components or assem-
bled PCs in their inventory, and no pending customer orders while they enjoy unlimited
credit from the bank. Each model of PC requires a different number of cycles to be
produced and an agent has a limited assembly capacity every day which is 2000 cycles.
The TAC server simulates the suppliers, customers, and the bank and provides produc-
tion, and warehousing services to the individual agents. The agent who makes the most
profit at the end is declared the winner.

During the game each agent negotiates contracts with the suppliers by first sending
RFQ requests for a specific type of component. Suppliers, which are utility maximisers,
reply with offers to these RFQs. In particular, in response to an agent’s RFQ, they may
send a complete offer which matches the agent’s request in terms of delivery date and
quantity, or partial offers that may not match the quantity or delivery date requested.
If the supplier cannot satisfy an order, no offer is sent. For every offer sent, the agent
needs to determine whether to accept it and place an order, or reject it. However, if both
partial and complete offers have been sent, the agent can only accept one of them.

The customers request PCs models for a specific due date indicating their reserva-
tion price by sending RFQs to all agents. The agent may reply with an offer bid, and the
customer awards the order to the lowest bid. The winning agent must deliver the PCs
ordered by the due date, otherwise it incurs a penalty. An agent is responsible for its pro-
duction and every day needs to send a schedule indicating how many PCs and of which
model will be manufactured the next day based on its assembly capacity. Obviously,
for manufacturing to take place the agent needs to have the necessary components in its
inventory. Components that arrive the same day can only be used in production the day
after. Each day the agent also needs to prepare a delivery schedule for the next day.

The TAC SCM game features two main interrelated problems:

The supplier problem. One of the main problems in the TAC SCM game is to plan
a good strategy for ordering components from the suppliers. There are many factors
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to take into account such as the quantity of components to be ordered, the date by
which they are required, the periodicity in which they are requested, the supplier who
provides them, the prices offered, the storage cost to be paid for them once they have
been received as well as the possible delivery delays that may occur among other things.
In essence, in dealing with the suppliers the agent acts as a reverse auctioneer in multi-
attribute auctions. Issues like sole sourcing and multiple sourcing are important in this
respect as well as the ability of an agent to switch from one supplier to another if needed.

The customer problem. The success of an agent does not only depend on the supplier
strategy adopted, but also on dealing with the customers and selling manufactured prod-
ucts. An agent competes with all other agents in the game to secure customer orders.
The components acquired will have been bought at different prices throughout the game
so a particular PC may cost a different price say on day 80, than on day 145. On top of
that, the agents have to take into consideration the cost that they have to pay while the
raw components and the finished products lie in storage. This side of the SCM game
resembles competing against other bidders in an auction. Although some information
on aggregate price statistics is revealed during the game, this is rather limited. For a
more detailed description see [3].

3 Related Work

The TAC SCM game has been running since 2003 with minor modifications every year
to improve its efficacy. One of the major problems in the game is obtaining components
to start production. In particular, the way that the suppliers worked in 2003, i.e. the
big discount rates given for orders early in the game, gives all agents the incentive to
request large quantities of components in the beginning. This problem has been coined
the “0-day effect”. Most of the agents in the 2003 competition had a day-0 procure-
ment strategy, i.e. they ordered large quantities in the beginning of the game. This was
also helped by the fact that there was no storage cost for keeping massive numbers of
components in the inventory.

RedAgent [11], the winner of TAC SCM’03, based its functionality on a multi-agent
design, in which it used simple heuristic agents for procuring components from the
suppliers. The main idea was to use internal markets to provide price estimates for the
extra components that it needed to purchase. TacTex [12] used the day-0 strategy and
sent extra RFQs during the game based on a prediction of the future inventory according
to the current usage of components. HarTAC [7] procured components with the day-0
strategy and tried to maintain a reasonable quantity of all components in stock at all
the times by ordering small quantities of components through the game; Botticelli [4]
and PSUTAC [13] only relied on the day-0 strategy without sending extra RFQs during
the game. DeepMaize [8] used a preemptive strategy to block agents that used day-0
strategy. The preemptive strategy worked by submitting a big RFQ to each supplier
for each type of component. This RFQ had the effect of preempting subsequent RFQs
because the supplier would have committed its production capacity for the rest of the
game. There were few other agents using conservative strategies, such as PackaTac [6],
who played a low-risk strategy maintaining a low level inventory of components. It
decided to use this strategy to counteract the day-0 strategies that emerged during the
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competition. NaRC [5] constructed RFQs and accepted offers from suppliers based on
projections for future prices and demand.

For the 2004 competition and in order to provide a disincentive for ordering and
holding large numbers of components in the inventory, a storage cost was introduced
and the pricing formula for the components was altered slightly. However, as it turned
out this did not have a major effect on the agents’ strategies regarding their RFQs to the
suppliers during the first few days of the game.

4 Socrates

Socrates is an autonomous trading agent built in Java. It is production-driven, that is to
say, we concentrated on strategies to deal with the suppliers, as despite the modifications
made to the game, obtaining the components was essential to enable one to compete and
acquire orders on the customers’ side.

The development of Socrates for TAC SCM 2004 was based on the Agentware
framework as provided by SICS, which includes a set of classes that provide the main
functionality to establish communication with the TAC SCM server and receive all the
events to be able to participate in the competition. The internal functionality of Socrates,
which determines the way in which it keeps and processes information, is based on
Value Object classes. A Value Object is a design pattern for representing objects as
containers of information [9, 2]. Value Objects are used to represent transient objects
to keep track of information during a TAC game. Hence, every RFQ, supplier offer,
order, PC model, is represented as a Value Object. Socrates builds a number of different
lists for these Value Objects in order to simplify their maintenance. Comparator classes,
which are Java classes that implement the Comparable interface, are then used to sort
the lists. The Comparator classes are defined by specifying the property or properties
of the Value Object class to be used for sorting the list. Once the lists are sorted, it is
easier to manipulate them. Socrates uses a FileManager class which is responsible for
reading the configuration files at the beginning of every TAC game. There are two con-
figuration files, the default aw.conf and our own configuration file soc.conf. The latter
one is used to specify the initial parameters to be used by the agent during the game.
The information contained in the files is then passed on to Socrates. The FileManager
is also responsible for storing information during the game in log files, which are then
used for subsequent analysis.

4.1 Preliminaries

As we are focusing on a production-driven strategy we need to estimate the number
of PCs that can be manufactured to achieve near to 100% utilisation. To determine the
components to be ordered we have to consider the duration of the game (220 days),
and the number of PCs that can be manufactured daily based on the agent’s assembly
capacity (2000 cycles). The average number of manufacturing cycles for a PC is:

AvgCycles = sum(Cyclesi)/16 = 5.5 (i is the PC model)
The assembly capacity for an agent during the whole game is therefore:
TotalAssemblyCycles = Days ∗DayCycles = 220 ∗ 2000 = 440000
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The number of PCs that can be assembled by an agent during the game is:
TotalPCs = 440000/5.5 = 80000

This calculation assumes that the agent is making full use of its assembly capacity
from day 0 to 219. But this is not realistic as the first components cannot arrive before
day 3 and therefore the earlier that production can start is on day 4. Moreover, produc-
tion on the last day is useless as the agent is unable to deliver the PCs manufactured
that day. The number of effective cycles and total number of PCs then would be:

EffectiveCycles = 215 ∗ 2000 = 430000
TotalEffectivePCs = 430000/5.5 = 78181

We also have to take into account the assembly capacity of the suppliers in order
to determine how many components a day they can produce. The expected assembly
capacity of a supplier is 500 components a day, and the real production capacity for
every day for each supplier is calculated as follows:

Cp(d)=max(0,Cp(d-1)+rnd(-0.05,0.05)*Cnominal+0.01*(Cnominal-Cp(d-1)))

Where Cnominal denotes the nominal or expected assembly capacity. We have deter-
mined experimentally that the average number of components that a supplier manufac-
tures every day is 400 of each of the 2 types of components it can produce. Thus, the
total number of components that can be produced during the whole game and the to-
tal number of PCs that can be manufactured can be calculated. CPUs are produced by
two suppliers, Pintel and IMD, each of which provide two varieties of CPUs. If every
supplier produces 400 CPUs of each variety daily, then 1600 CPUs are produced every
day, which represents 1600 PCs. Considering that a supplier cannot produce any com-
ponents on the first two days and that the production on the last two days is useless, we
can approximate the total number of PCs that can be produced in a game:

AllPCs = 1600 ∗ 216 = 345600

Assuming that all agents manufacture approximately the same number of PCs:

345600PCs/6 agents = 57600 PCs

This number is only an approximation and can vary from game to game.

4.2 Supplier Strategies

We explored a number of strategies to deal with the suppliers in the TAC SCM 2004
competition as well as in a number of controlled experiments. The underlying strategy is
based on what we call the Massive Simple Strategy (MSS) which simply sends 5 RFQs
with big quantities to every supplier for every component they supply on day 0. The 5
RFQs are split taking into consideration the number of days that the components will
last in the inventory, which can be computed by taking into consideration the assembly
capacity of the agent and the average number of cycles needed for one PC to be manu-
factured. The 5 RFQs request a number of components enough to manufacture between
55000 and 65000 PCs during the entire game, which ensures a production between 150
and 180 days. For instance, the following RFQ bundle shows how Socrates splits the
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number of components to manufacture 56628 PCs: 〈〈RFQ1,1452,10〉, 〈RFQ2,2178,25〉,
〈RFQ3,2904,49〉, 〈RFQ4,3630,81〉, 〈RFQ5,3993,121〉〉.

Once all these RFQs have been sent to the suppliers on day 0, the agent will receive
offers for all or some of them on day 1. The basic version of the strategy considers
accepting only complete or earliest complete offers whose delivery date is below a Cut-
Off-Date, which is set to 180 considering that suppliers can delay the deliveries. This
very simple strategy has a number of shortcomings:

1. It does not take into account that suppliers may not reply to all of the RFQs sent
by the agents. If some of them are not matched by offers, the agent will end up with a
number of unusable components in the inventory.
2. The same situation as above occurs if the agent receives offers with a delivery date
above the Cut-Off-Date, which will not be accepted.
3. Suppliers can make offers with a delivery date below the Cut-Off-Date, but with a
significant deviation from the requested date. This would cause the agent to wait for
deliveries, which may lead to poor factory utilisation for a significant number of days
due to lack of essential components.
4. If the components are received on time, the agent may exhaust them quite early in
the game and then it remains idle.
5. The suppliers’ delays may lead to gaps in the production.

To tackle the first two shortcomings, the agent detects on day 1 those RFQs that did
not receive any offers from the suppliers, and also those that were not accepted by the
agent because the offered delivery date was above the Cut-Off-Date. In both cases, this
generates new RFQs which are re-sent to the suppliers. This process is carried out ev-
ery day from day 1 onwards until the agent has received and accepted offers for all its
RFQs.

Although this improvement helps, it does not solve the problem of lacking compo-
nents of one or more types during a period in the game. If the agent has no memories,
for instance, it cannot manufacture any PCs. This is because, although the supplier can
supply the agent with the requested quantity this may be some time after all the other
components essential for the production of specific types of PCs have been received. To
tackle this, Socrates does not to accept earliest complete offers whose delivery date is
greater than the requested date plus a fixed number of days, which was experimentally
determined and set to a value between 30-40, and accepts partial offers instead (if any).
The agent keeps track of the quantity of missing components of each type:

MissingComp[compId] = MissingComp[compId] + QRequested-QAccepted

Where every element in the array MissingComp[] is a type of component identified by
compId; MissingComp[compId] is the existing quantity of missing components of type
compId (generated due to previous partial offers accepted); QRequested is the quantity
of components requested in the RFQ; and QAccepted is the quantity of components ac-
cepted in the partial offer. The missing quantities are then reordered in smaller quantities
(400 components each). When suppliers send offers in response to these new RFQs, the
agent accepts either partially complete or partial offers and keeps track of the number
of missing components.
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When components arrive on time, the agent will most likely have used its inventory
for manufacturing PCs, and towards the end of the game it remains idle. To address this
issue, another modification was introduced. To determine if the agent needs more com-
ponents towards the end we have to ensure the agent has received all the components
and calculate the number of PCs that can be manufactured with the current inventory.
Considering the LastDeliveryDate (usually set to 121) that Socrates asks for compo-
nents, the algorithm starts checking on day LastDeliveryDate+30 if all components
have been received. If this is the case and there are enough days to manufacture more
PCs, Socrates starts ordering more components in small quantities. The total quantity
of components to be ordered depends on the number of remaining days in the game and
the quantity of PCs that can be assembled.

4.3 Dealing with Gaps in the Production

Although the steps described so far deal with some of the problems in obtaining compo-
nents and keeping the production steady, there are still gaps in the production schedule.
To this end, a strategy that would detect the gaps in the factory utilisation for the whole
game by analyzing all the ActiveOrders of components after the agent has accepted of-
fers from suppliers for all the initial RFQs sent was deployed. The ActiveOrders provide
information about when the components are supposed to be delivered and this will be
known early in the game. The algorithm determines the gaps in the factory utilisation
by looking at the delivery dates in the ActiveOrders:

1. Generate a virtual production of PCs with the current inventory (if any) utilising
100% of the assembly capacity, and determine the day in the game in which the pro-
duction of PCs falls below 100%.
2. The day found in the previous step is used to look for ActiveOrders that should be
delivered before that day or on that day. The agent has two alternatives: go to step 3 if
there are ActiveOrders, or alternatively go to step 4.
3. The ActiveOrders found give the agent a virtual inventory of components that will
be added up to the remaining inventory from step 1. The agent generates the virtual
production of PCs with the new inventory (the remaining inventory from step 1 plus the
virtual inventory) and determines the day in which the production stops due to lack of
components. The agent continues with step 2.
4. This step is executed if there are no more ActiveOrders, that is the agent has no more
components to manufacture for this day and probably for more days, because the next
ActiveOrders (if any) will be delivered later in the game. This will lead to a gap of
one or more days depending on when the next components arrive. The agent looks for
the next ActiveOrders that give the 100% factory utilisation, keeps track of the days in
which it cannot manufacture and goes to step 3. The number of days without production
is used to generate new RFQs.
5. The algorithm attempts to fill in the detected gaps by sending RFQs only for those
types of components necessary to have 100% factory utilisation during those periods
in the game. The agent sends RFQs to cover production for 1 day, thus if there is a
gap of 6 days in the production schedule 6 RFQs will be sent. The recursive algorithm
described above is executed every TAC day until day 200 to determine if the gaps have



Socrates: A Production-Driven SCM Agent 133

been covered by the RFQs sent. The agent will accept complete offers, earliest complete
offers, or partial offers.

One problem with this strategy is that the virtual production can be unreliable as
suppliers can delay the delivery of components. The gaps produced because of the
initial RFQs can be covered, but new gaps can appear because of the delay of
components.

4.4 Customers and Scheduling

Socrates’ customer strategy is simple: it responds to customer RFQs which can be sat-
isfied based on the current inventory of finished PCs. Three different ways of sorting
the customer RFQs were considered and tested during the competition (a) quantity in
RFQ; (b) reservation price; (c) expected profit. The method adopted was (b). Taking
into account the reservation price in each RFQ, Socrates looks at the current inventory
and decides which RFQs to bid for. The offered price depends on a number of factors
including the current date, the quantity held in stock for the particular PC model and
the average price as reported in the market report. These factors determine different
levels of discounts during the game and are cumulative. However, Socrates also keeps
track of how well its sales policy operates during the game by looking at the ratio of
OffersSent/OrdersReceived. If the orders fall below certain thresholds and in combi-
nation with other conditions in the game, a price adjustment mechanism is triggered
which overrides the discount price offered normally to improve Socrates’ sales posi-
tion. The delivery of finished PCs is arranged as soon as an order is confirmed by the
customer, thus eliminating penalties. The major shortcoming of this aspect of Socrates
is that future production is not taken into account.

The aim of the production schedule is to utilise the full assembly capacity of ev-
ery TAC day. The agent assembles an almost equal number of PCs of each of the 16
models, provided that there are enough parts in the inventory to do so. If there is a
lack of one or more components, which precludes the manufacturing of some partic-
ular PC models, Socrates adjusts its production so that an equal number of the other
PC models can be manufactured. The production schedule does not take into account
customer demand which is a major shortcoming. One way to address this is to either
look at the customer RFQs and the most wanted or unwanted models of PCs and man-
ufacture less of those, or look at the inventory of current PCs and if the quantities
held reach certain thresholds, the production of those PC models can be temporarily
suspended.

5 Results

The following supplier strategies were developed on top of the MSS strategy:

• Multi-Attempt Massive Strategy (MAMS): Tackles problems 1 and 2 by re-sending
those RFQs that did not receive offers or are above the Cut-Off-Date.
• Enhanced Multi-Attempt Massive Strategy with Last Ordering (EMAMS-LO): This
strategy works as MAMS, but it also addresses problem (4) by ordering components
towards the end.
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• Multi-Attempt Massive Strategy with Prediction of Gaps (MAMS-PG): As MAMS,
but this strategy addresses problem (5) by predicting gaps in the production given the
current inventory and the active orders.
• Multi-Attempt Massive Strategy with Small Orders (MAMS-SO): This strategy op-
erates as MAMS, but orders small quantities of components for a period of time de-
termined at the beginning of the game in an attempt to avoid gaps in the production
(although these are not predicted as in the previous variation).

5.1 TAC SCM 2004

The TAC SMC 2004 competition involved five rounds: (a) qualifying, (b) seeding, (c)
quarter finals, (d) semi-finals, and (e) finals. In the qualifying round 31 teams partic-
ipated and games were played 24 hours each weekday for two weeks. All agents that
were active over 50% of the games were allowed to advance to the seeding round (30
teams). The seeding rounds took place over a two-week period similarly to the qualify-
ing round. The success of an agent was measured by a weighted average of its scores
in all games for which it was scheduled. Games played during the second week were
worth twice as much as those played in the first week. The top 24 agents proceeded to
the quarter finals for which they were divided in four groups according to their final
position in the seeding round:

group A: positions 1, 2, 3, 22, 23, 24; group B: positions 4, 5, 6, 19, 20, 21.
group C: positions 7, 8, 9, 16, 17, 18; group D: positions 10, 11, 12, 13, 14, 15.

Every group played 8 games. The top three teams from each group progressed to
the semi-finals in which the agents were divided into two groups: group 1: agents from
groups A and D, and group 2: agents from groups B and C. The top three teams in
each semifinal progressed to the finals, in which they played 16 games in total. The top
scoring agent in the finals was declared the winner.

In the first week of the qualifying rounds the MSS strategy was used and Socrates
ended up in position 20 - this was due to the problems discussed in section 4.2. In the
second week of the qualifying rounds the EMAMS-LO strategy was used. EMAMS-LO
was quite effective in keeping the factory utilisation up towards the end of the game,
if Socrates had already received the other components on time. One disadvantage of
this strategy is that in some games it is not worth ordering components towards the
end as the difference between the cost of the components purchased and the price of
the PCs sold gives the agent no profit. Socrates was placed 16th at the end of the 2nd
week.

In the seeding round Socrates (76 games) the strategy used was MAMS-PG which
attempts to predict gaps in the production after accepting all the initial offers from the
suppliers. Factory utilisation improved from 75% in the qualifying rounds to 81% in
the seeding rounds, and the average score improved as well. Socrates was placed in the
13th position at the end of the seeding rounds.

Socrates qualified for the quarter finals and was placed in the most competitive group,
D, in which all agents seemed to have similar average scores and used similar strategies.
Socrates strategy in the quarter finals was EMAMS. The performance of EMAMS was
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Fig. 1. Top: Average score of Socrates using EMAMS in quarter finals. Bottom: Average score of
Socrates using MAMS-SO in semi-finals.
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Fig. 2. Factory utilisation of Socrates with: (a) EMAMS in quarter finals; and (b) MAMS-SO in
semi-finals

good in most of the games. The results from this round for group D are summarized in
Fig. 1(a), 2(a) and 3(a).

Based on the quarter final results Socrates qualified for the semi-finals. The semifi-
nal round which involved 16 games was a highly competitive environment with agents
with very similar strategies procuring components on day 0. In this round, Socrates
played with the MAMS-SO strategy. The strategy was not able to succeed in this
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Fig. 3. Average percentage of customer orders won by each of the agents in (a) the quarter finals,
(b) the semi-finals
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Fig. 4. (a) Number of agents per game; (b) Factory utilisation of Socrates agents in respective
game

environment as SouthamptonTAC was using a strategy (initially used the day before
by another agent) which consisted of purchasing large quantities of memories by send-
ing RFQs on day 0 to all the suppliers of this type of component. The agents whose
RFQs were processed after the RFQs of SouthamptonTAC suffered from the lack of
this type of component for long periods since all of the suppliers’ production capac-
ity was committed. As a result and since an agent is not allowed to change its strat-
egy during a round, Socrates did not qualify for the next round. This also had an im-
pact on the other agents. The overall results are shown in Fig. 1(b), 2(b) 3(b). The
top scoring agent of TAC SCM 2004 was FreeAgent, followed by Mr.UMBC and
UMTac-04.

5.2 Controlled Experiments

To evaluate the performance of our agent, in terms of factory utilisation, we ran a set
of controlled experiments (in a similar way to [10]) in which we included 3 types of
agents according to the way in which they order components:

• Conservative-Strategy Agents (C-S Agents) which order in small quantities.
•Massive-Strategy Agents (M-S Agents) which order large quantities in the beginning
of the game to guarantee production the rest of the game.
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Fig. 5. (a) Average factory utilisation for Socrates agents playing against M-S and C-S agents. (b)
Factory utilisation in experiments using the MAMS-PG-SS strategy.

• Socrates Agents. These use the Multi-Attempt Massive Strategy with Prediction of
Gaps which orders big quantities at the beginning and fills the gaps throughout the
game to maintain 100% factory utilisation (section 3).

Fig. 4(a) shows the 21 different scenarios used in the experiments, in which we
have all the possible combinations of C-S, M-S and Socrates agents for a TAC 6-player
game. The first line of the table indicates the number of C-S agents, the first column the
number of M-S agents, while the main part of the table indicates the number of Socrates
agents in the game. We ran 50 games for each scenario to test the performance of the
agents in the different environments.

Fig. 4(b) shows the average of factory utilisation for Socrates agents in each sce-
nario. For example for a game with 2 C-S agents and 1 M-S agent there are 3 Socrates
agents, which achieve in average a factory utilisation of 84%. When there is more than
1 Socrates agent in a game we take the average of factory utilisation. Fig. 4(b) indicates
that in non-competitive environments the factory utilisation for Socrates agents is better
than that in competitive environments. We define a non-competitive environment as the
environment in which the number of C-S agents is less than the sum of M-S agents and
Socrates agents:

(# of C-S agents) <(# of M-S agents) + (Socrates agents)

Those environments in which the sum of M-S agents and Socrates agents is greater
than the number of C-S agents are referred to as “competitive”. Fig. 5(a) graphically
illustrates the results from Fig. 4(a) in which as one can observe the more Socrates
agents playing in a game (including M-S agents), the more competitive the environ-
ment is. The z axis in Fig 5(a) shows the average percentage of factory utilisation for
Socrates agents, which demonstrates that they behave much better in non-competitive
environments than they do in competitive ones.

One of the main weaknesses of the supplier strategies that were considered and tested
during TAC SCM is their inability to adapt dynamically to conditions in the game
that affect the procurement of components. One possibility was to allow the agent to
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switch between suppliers and components when one supplier fails to supply them. This
new strategy, Multi-Attempt Massive Strategy with Prediction of Gaps with Supplier
Switching (MAMS-PG-SS), combines the prediction of gaps with a strategy that looks
for substitutable components. It determines the set of components that can be substi-
tuted for every component that the agent can order. For instance, if Socrates cannot
obtain memory 1GB from supplier Queenmax, then it looks for substitutable compo-
nents in the following order: memory 1 GB (MEC), memory 2 GB (Queenmax) and
finally memory 2 (MEC). This list indicates the order in which the agent will try to sat-
isfy the number of components needed. The agent keeps track of the number of attempts
to every supplier and if it reaches a threshold value the agent switches supplier or in the
appropriate case supplier and type of component. This process is carried out until the
agent satisfies the quantity needed of every component. The strategy works as expected
when a supplier cannot provide the specific component, and the agent has to look for a
replacement. Since it works by substituting the supplier or the type of component, the
number of PCs of each model assembled in a TAC day will be different. In some cases,
the agent will be left with a number of unused components in its inventory. This occurs
when the agent has ordered a greater number of CPUs than the number of motherboards
of one specific type (Pintel or IMD) in its attempt to find substitutable components and
manufacture alternative PC models. We run a series of 100 games to compare this strat-
egy against all the previous ones developed, while introducing a SouthamptonTAC-like
behaviour (TestAgent) to observe the results. However, as we haven’t had the chance to
test this strategy against other real agents and all our strategies operate in a similar way,
the results as shown in Fig. 5(b) are not conclusive.

6 Conclusions

This paper presented the Socrates trading agent and the strategies employed in the TAC
SCM 2004 competition. Socrates is a production-driven agent which attempts to keep
factory utilisation to the maximum throughout the game. As such it is plagued by a
number of problems as has been described, more so as customer demand is not taken
into consideration when making orders to the suppliers or scheduling production. We
hope to address some of these problems for the TAC SCM 2006 competition. In partic-
ular, we are working on a strategy that concentrates equally on the customers’ side as
well as on the supplier side. We would like to explore the idea of using variable scoring
functions to deal with the supplier side. We are also considering the scheduling prob-
lem under a new light, using a daily schedule as well as a dynamic global production
schedule that takes into account the current inventory of components and the component
ActiveOrders in deciding which customer orders can be satisfied.
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Abstract. This paper describes the design and evaluation of SouthamptonSCM,
a finalist in the 2004 International Trading Agent Supply Chain Management
Competition (TAC SCM). In particular, we focus on the way in which our agent
sets its prices according to the prevailing market situation and its own inventory
level (because this adaptivity and flexibility are the key components of its suc-
cess). Specifically, we analyse our pricing model’s performance both in the actual
competition and in controlled experiments. Through this evaluation, we show that
SouthamptonSCM performs well across a broad range of environments.

1 Introduction

Internet technologies have contributed significantly to e-commerce by increasing the
mutual visibility of consumers and suppliers, and by raising the possibility that some
of their trading processes may be automated. However, despite these advances, most
procurement activities within supply chains are still based on static long-term con-
tracts and relationships. Now, in many cases, such contracts are detrimental because
they fail to handle the dynamic nature of these environments, where new suppliers and
consumers may enter the market at anytime and where trading partners may fail to ful-
fill their commitments. To rectify this, we believe agent-based solutions are needed.
To date, however, the use of agents within e-commerce has generally focused on sim-
ple auctions [4]. Whereas, the supply chain domain typically requires handling a more
complex setting in the presence of much greater degrees of uncertainty and
dynamism [6].

To this end, the International Trading Agents Competition for Supply Chain Man-
agement (http://www.sics.se/tac) (TAC SCM [1]) represents an ideal envi-
ronment in which to test the autonomous agents that we develop. Such multi-agent
research competitions present well-defined problems in which alternative solutions can
be tested, compared and evaluated. In the TAC SCM scenario, agents are competing
as computer manufacturers in a virtual business world to handle three basic subtasks:
acquiring components, managing manufacturing process, and selling assembled com-
puters to customers.

Against this background, we present our work in developing an adaptive agent that
was a finalist in the 2004 TAC SCM competition (6 out of 29 participants reached the
finals). The key contribution of this work is the techniques that we develop to enable the

H. La Poutré, N. Sadeh, and S. Janson (Eds.): AMEC and TADA 2005, LNAI 3937, pp. 140–156, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Designing and Evaluating an Adaptive Trading Agent 141

agent to adapt its price setting to the prevailing market situation, its own internal state
(inventory level) and the time that has elapsed. At their core, these techniques employ
fuzzy reasoning in order to allow the agent to adapt its prices daily so that it can fully
exploit its production capacity, while still maximising its revenue by selling at appro-
priate prices. Previously, fuzzy techniques have been successfully applied to solve the
problems of automated auction [3,5], TAC classic (SouthamptonTAC [3]) and negotia-
tion [7]. We believe fuzzy logic provides an effective tool to cope with the uncertainty
inherent in a complex decision making problem (e.g. the supply chain context) and to
make trade-offs between the variants of attributes (e.g. price and quantity). Also, fuzzy
rules are the most visible and interpretable manifestation of this approach and have been
successfully used in a variety of areas [10].

The remainder of the paper is organized as follows. Section 2 outlines the TAC SCM.
Section 3 presents our agent. Section 4 evaluates the performance of the agent. Finally,
Section 5 concludes.

2 The TAC SCM Game

In this game, six agents (competition entrants) compete with one another to procure
raw components and fulfil customer orders for assembled PCs. Each PC is assem-
bled from four components: CPU, motherboard, memory and hard disk (e.g. a PC
with a 2GHz IMD processor with 1GB memory and a 300GB hard drive). Each agent
is able to produce any of the 16 distinct computer types (different PC types require
a different number of production cycles) and is limited to a capacity of 2000 cycles
daily.

The agents operate simultaneously in separate markets to buy components from a
number of suppliers and to sell PCs to customers. Both of these markets operate as
follows: (i) the buyer issues Request For Quotes (RFQs) to the sellers; (ii) the sellers
respond to the RFQs with offers detailing the price, quantity or delivery date; and (iii)
the buyer sends orders to accept offers.

Consequently, on each of the 220 simulation days of the game, agents receive from
the customers a new set of RFQs and, in response to previously sent offers, they receive
orders for assembled computers. Likewise, component suppliers that were previously
sent RFQs respond with offers. Thus, in each day of the game (lasting 15 seconds), the
agent must decide on the following: (i) which new supplier RFQs to issue and which
supplier offers to accept; (ii) which customer RFQs to respond to, and what price to
offer; and (iii) how to schedule the production and delivery of PCs given the availability
of components, the limited capacity of the factory and the delivery deadlines of pending
orders.

An agent spends money on buying the components, paying for the storage of both
components and PCs, paying penalties if it defaults on a promised delivery date and
paying overdraft penalties if it is in debt to the bank. The agent earns money by selling
PCs and receives interest from the bank if its balance is positive. Success of an agent is
measured in terms of its profit (i.e., its bank balance at the end of the game).
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Fig. 1. Overview of the SouthamptonSCM agent

3 SouthamptonSCM

SouthamptonSCM can be decomposed into three sub-agents (see Figure 1).1 The com-
ponent agent decides which RFQs and which orders to send to which suppliers. The cus-
tomer agent receives RFQs from the customers and decides what offers to respond with.
It also communicates with the factory agent to obtain the updated inventory levels and to
send the relevant customer PC orders. The factory agent receives the supplies delivered
from the suppliers, decides based on the available resources (computer components and
factory cycles) in what order the customer orders should be produced, and determines
the schedules for delivering the finished PCs to the customers. We now deal, in turn, with
each of these sub-agents.

3.1 The Component Agent

The price offered by a supplier in response to an RFQ is based entirely on its available
production capacity and the quantity agents ask for (i.e., price increases as capacity
decreases or quantity required increases). On Day 0, all the suppliers have their full
capacity available, thus the prices they offer are at their lowest value. Therefore, intu-
itively, it makes sense to order a large number of components on Day 0 (indeed this was
a widely used tactic in the 2003 competition [9]). However, due to a rule change, the
components now attract a storage cost. Thus the more the agent stores and the longer
it stores it, the higher the storage cost. This means the key challenge of the component
agent is to attain an appropriate balance between availability and timeliness. This is hard
because if the agent buys more units early (at lower prices) it has to pay for storage and
some components may be unused at the end of the game. However if the agent just buys
what it needs when it is needed, it may end up without the necessary components at the
necessary time (since there is often a delay between the actual delivery date and the one
the suppliers promise). Given this, our agent makes a trade-off between placing a big
order on Day 0 and buying gradually during the rest of the game.

In more detail, experience from practise games showed that despite the storage cost,
having a reasonably big order on Day 0 is still profitable because of the low prices that

1 Here we use the notion of sub-agents (instead of modules) because each of them can au-
tonomously communicate with the suppliers and customers to get the RFQs, can send offers
and obtain orders, and can decide how to respond to this information.
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can be obtained. Specifically, we found it most effective when this number just covers
the quantity the agent needs in low demand games. Thus on Day 0, SouthamptonSCM
orders a large number of components (2000, 2000, 2500, 3500, 5000) from each sup-
plier with corresponding delivery dates of Day 10, 25, 40, 70 and 110. These dates were
chosen in order to give the agent a steady stream of components for the early to middle
part of the game. The agent accepts the corresponding offer if the delivery date is not
too far from the date it asks for. However, if the demand turns out to be greater than
what the agent ordered, it can still buy components (at higher prices) during the rest of
the game. In particular, after the Day 0 order, the agent keeps asking for small quanti-
ties of components from the suppliers and placing orders for them if the offer price is
low. At about Day 140, the agent starts to order components for the rest of the game.
It does this based on the average daily demand for computers (as a predictor of how
many components are needed) and buys gradually if the offer prices from the suppliers
are low.

3.2 The Customer Agent

The customer agent is the key component in SouthamptonSCM’s strategy (because we
believe that offering the appropriate price at the right time is vital for success). If the
price is too low, the agent will receive a low profit and if it is too high it will fail to win
any orders (because customers always choose the lowest offer price among those they
receive). Here, the key challenges are to determine which customer RFQs to bid for and
at what price. To achieve this, we use inventory driven methods to choose RFQs and
soft computing techniques to calculate the price (see below).

Choosing RFQs and setting prices. The customer agent uses an inventory driven
strategy when selecting customer RFQs. That is, it only offers customers PCs according
to what is presently available in its inventory. By doing this, the agent avoids getting
penalties for committing to more than it can produce (the quantity of PCs it can produce
is constrained by the availability of components and factory cycles).

In more detail, Table 1 shows the strategy we use. Given a customer RFQ (i, q, pres,
cpenalty , ddue), where i ∈ {1, · · · , 16} is the type of PC the customer wants, q > 0 the
quantity, pres > 0 the reservation price (maximum it will pay), cpenalty > 0 the fine
if the computers are not delivered on time, and ddue the desired delivery date. On each
day, the customer agent receives a bundle of such RFQs and sorts them in the order
of decreasing (pres − cpenalty/q). The intuition here is that the agent will first serve
customers with high reserve prices and low penalties. This is because the higher the
pres, the more profit will be made (compared to selling the same product to a customer
with a low pres). At the same time, the agent also wants to avoid getting high penalty
orders because of the inherent uncertainties that exist in the game.

The next consideration relates to the agent’s production capacity. Specifically, as
there is only limited production capacity per day, the agent needs to calculate the num-
ber of cycles that can be offered to respond to the customer RFQs of that day.2 Thus, it

2 Note here the agent does not offer the exact number of cycles that are available (C[ddue − 2])
on day (ddue − 2), but rather it includes a risk factor (λ × C[ddue − 2]) which enables it to
offer more than it actually has in order to maximise the production utilisation. Here λ > 1.
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Table 1. Pricing strategy on day d

• list RFQs in decreasing order of (pres − cpenalty/q)
• update the production capacity C[k] of each day k
• offeredCycles = 0 and reservedCycles[k] = 0
• calculate the reference price for each kind of PC pi

ref

• for each RFQ in the list
– poffer = max{pi

ref × (1 + f(ddue)), pi
base}

– if PC inventory ≥ q then
- offer q PCs at poffer

- decrease PC inventory by q
– else if component inventory ≥ q and

reservedCycles[ddue − 2] + q × oi ≤ C[ddue − 2] × λ then
- offer q PCs at poffer

- increase offeredCycles by q × oi

- decrease reservedCycles[ddue − 2] by q × oi

- decrease component inventory accordingly
- else do not offer PCs to this customer

updates the available production cycles for each day based on the customer orders that
have just been received. Specifically, for each RFQ, the agent first checks whether it can
be supplied from its stock of finished PCs (see Section 3.3). If it can, the correspond-
ing PC inventory is decreased. Otherwise, the agent checks whether it holds enough
components in its inventory and whether it has a sufficiently high remaining production
capacity C[ddue − 2] on day (ddue − 2), which is the latest the PCs can be produced.3

If it does, the agent decreases its component inventory and reservedCycles for day
(ddue − 2) accordingly and increases the number of cycles offered (q × oi, where oi is
the cycles needed for PC type i) on that day.

Now the agent needs to consider what price can be offered to the RFQ. Based on the
demand in the market, the inventory level, and how far we are into the game, the agent
first computes a reference price (pi

ref ) that corresponds to a reasonable current market
price. Thus for PC type i:

pi
ref = pi

low + (pi
high − pi

low)r, (1)

where pi
low, pi

high are the lowest and highest transaction prices of PC type i on the
previous day, and r ∈ [0.4, 1.2] is an adjustment factor that determines how far away the
reference price is from the lowest price. This adjustment factor is set through the fuzzy
reasoning mechanism and is adapted according to the quantity of orders received and the
number of orders expected (see Section 3.2 for more details). However, given an RFQ,
the offer price is not the reference price of PC type i. Rather, poffer is the maximum
of the cost for PC type i (pi

base is the money spent buying the constituent components)

3 Note that for an RFQ with the due date d, the agent checks whether it can be produced on
the latest possible day (d − 2) because this has previously been shown to be effective in this
scenario [2].
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and the reference price modified by a factor related to the requested delivery date. This
ensures the agent sells the PC at least for its cost. The use of ddue means that the sooner
the due date, the higher the offered price is compared to the reference price (because
the agent has little time to produce the computers with a bigger risk of being penalised
for being late).

In more detail, the fuzzy reasoning inference mechanism employed to set the adjust-
ment factor in Equation (1) is based on the standard Sugeno controller [8]. Our agent
uses two rule bases: one for the end stage of the game (about last 40 days) and one
for other days in the game. Both rule bases incorporate some 20 rules4 which vary the
price according to the market demand, its inventory level and time into the game (see
Appendix for details of the rule bases). We show two representative rules below:

Rj: if D is high and I is high and ND is far then rj is big
Rq: if D is high and E is close then rq is very-small

where the customer demand (D) is expressed in the fuzzy linguistic terms high, medium,
and low, the inventory level (I) in the terms high, medium, and low, next delivery date
of a big amount of components (ND) in the terms far, medium, and close and days to
the end of the game (E) in the terms: far, medium, and close. rj is the output of the
individual rule j (i.e., the adjustment factor discussed above). Thus, rule Rj captures
the fact that if the type of PC is in high demand in the market, the agent has a high
inventory for this kind of PC and there is a long time until the next delivery for a high
volume of components, then rj should be big (thus resulting in a higher bid price). The
second ruleRq captures the fact that if there is high demand for a particular type of PC
and there is a little time until the end of the game, then rq should be very small (thus
ensuring a low offer price and hence reducing the risk of being left with inventory at
the end of the game). The firing level αj ∈ [0, 1] of ruleRj is computed in the standard
way by using the Min operator on the membership values of the corresponding fuzzy
sets. According to the Sugeno controller definition, the crisp control action (i.e., the
output of the fuzzy rule base fed into Equation (1)) is:

r =

∑n
j=1 αjrj∑n

j=1 αj
(2)

Adaptation of offer prices. Given the uncertainty in TAC SCM, we believe it is es-
sential for the agents to be responsive to the prevailing situation during the course of
bidding for customer orders. The idea is that the agent can only use 2000 production cy-
cles every day, so, to maximise throughput, the number of cycles necessary to produce
the received customer orders should also be 2000. Thus if the received orders require

4 In generating the rules, we followed the steps below: (1) determine what to reason about
in this SCM game – the offer price; (2) choose the factors that should be used in the rules –
inventory level, demand, and time into the game (there may be some other factors, but these are
the most relevant ones); (3) structure the fuzzy rules – based on the relationship of the factors
to the reasoning value and experiences in the field; (4) decide how to adapt the parameters in
the rules – SouthamptonSCM adapts the price based on the quantity of the received customer
orders and the expected number of orders. (5) refine the rules and parameters.
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Table 2. Adaptation of the offer prices

• update receivedTotalCycles;
• calculate receivedCycles;
• expectedCycles = min{2000, offeredCycles × µ};
• if receivedCycles < expectedCycles then r = r − δ;
• else if receivedCycles > expectedCycles then r = r + δ.

more than this figure, it means that the agent has set its offer price too low. In contrast,
if the number is too small, it means the agent is not winning enough customer orders
(which implies that its offer price is too high). However, we cannot just base our deci-
sion on 2000 cycles because some of that day’s production cycles might be reserved by
the orders of previous days (because more than 2000 cycles were needed previously).
In this case, the number of expected cycles for the day’s order is only part of the offered
cycles of the previous day (because all agents compete for customer orders and only the
lowest price can be accepted). With this information, the agent can adapt its offer prices
in order to try and keep the factory working at high capacity, but still be responsive to
the prices other agents offer (based on the highest and lowest transaction prices of the
previous day). Specifically, the adaptation rule is if the orders the agent receives need
more cycles than it expected, it will increase its price, otherwise it will decrease it.

Table 2 shows how the price adaptation works. Here, receivedTotalCycles repre-
sents the total number of cycles needed to produce the PCs for the orders just received;
receivedCycles represents the cycles needed for the orders that the agent offers from
the component inventory rather than the finished PCs (finished PCs do not count since
they do not require more cycles to produce them); offeredCycles is the actual total
number of cycles offered on the previous day (as per Table 1) and expectedCycles
is offeredCycles multiplied by the expected acceptance rate (µ = 0.75), i.e., how
many cycles are expected to win customer orders among all the cycles offered. Now
if receivedCycles is much less than the expected number of cycles, the agent will
decrease the adjustment factor (thus the price is decreased, see Equation (1)) by δ
(here δ = 0.02), otherwise it will increase the adjustment factor (thus the price is in-
creased). However sometimes if the expected number of cycles is only slightly smaller
than the actual number of received cycles, we do not decrease the offer prices (since
this is a close enough approximation in a noisy environment). To realise this, we view
expectedCycles as a fuzzy number [11].

3.3 The Factory Agent

One of the main challenges for the factory agent is scheduling what to produce and
when to produce it (i.e., how to allocate supply resources and factory time). The strat-
egy we use includes: manufacturing PCs according to customer orders and satisfying
orders with an earlier delivery date (see Table 3 for more detail). Now, since the com-
puters stored in the factory will be charged storage cost, each order will be delivered
as soon as it is filled. The agent builds the PCs according to the customers’ orders it
has obtained (which has the advantage of ensuring that the factory always produces the
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Table 3. Production scheduling for day d

• list the orders with due date d + 2 in list 1;
• list late orders (but still valid d − 3 ≤ ddue ≤ d + 1) in the decreasing order

of the due date into list 2;
• list the future orders (due date ≥ d + 3) in the increasing order of the due

date into list 3;
• append list 2 to list 1 and list 3 to list 2;
• for each order in the combined list

– if computers in the inventory can fill the order then deliver computers;
– else if components are available and factory capacity is not full

then produce more PCs to fill the order;
• if there is extra factory capacity left and enough components,

then check whether additional PCs should be produced.

needed computers on time). However, if there are still factory assembling cycles left
and the numbers of finished PCs are below a certain threshold then the agent produces
additional PCs of each kind uniformly (if there are enough components) to maximise
the factory utilisation. In particular, this strategy benefits the agent when there is a low
demand in the market (because there are actually spare cycles) and it works well in
the final stages of the game. For example, on Day 217, the agent can bid on customer
orders that come in on that day, meaning it gets the orders on Day 218 and delivers the
computers on the last day of the game. If it just used the build-to-order strategy, the
agent would not be able to bid for the customer orders on Day 217 because after it wins
the order, there would be no time for it to buy the needed components and produce the
PCs.

4 Evaluation

Our evaluation is composed of three components: (i) the results from the 2004 competi-
tion; (ii) our post-hoc analysis of some of the games in the actual competition; and (iii)
a systematic range of controlled experiments.

4.1 TAC SCM Results

TAC SCM consists of a preliminary round (mainly used for practice and fine tuning),
a seeding round, quarter-finals, semi-finals, and final. The seeding round determined
groupings for the quarter-finals. The top 24 agents were organised into 4 “heats” for the
quarter-finals based on the positions in the seeding round and the first 3 teams for the
quarter-finals of heat 1 and 3 entered into semi-final 1 and, similarly, the first 3 teams
from heat 2 and 4 were entered into semi-final 2. Finally, the first 3 teams in both semi-
finals entered into the final round. In the seeding round, SouthamptonSCM obtained the
third highest score among all the participants and entered heat 1 for the quarter-final. In
the quarter-final, we had the second highest score and we were first in our semi-final. In
the final, our agent finished in 6th position. In the final, our agent was adversely affected
by the fact that several agents sent RFQs on Day 0 for huge quantities of components.
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Then, if the corresponding offers were expensive they declined to buy them or if they
were cheap they took up the offers. However, in the meantime, since the suppliers have
limited capacity they scheduled other Day 0 orders for much later in the game. Thus
when this happened our Day 0 bidding was severely effected (sometimes up to Day 70)
and we received severely delayed delivery dates for our orders. In such cases, we were
simply unable to obtain the components we needed through our Day-0 procurement
policy and so we made very few sales.

4.2 Competition Game Analysis

To complement and better understand the competition result and to evaluate the effec-
tiveness of our pricing model we conducted a post hoc analysis. However it is hard to
see how the pricing works from only the game results since the competition entrants
contain a variety of interrelated strategies (for the different facets of their operation).
Thus we decided to compare for the RFQs that the agents responded to, how the price
varies among different agents.5 To do this, we analysed competition games and we were
especially interested in those cases where there were strong agents. Here we take a ran-
domly chosen representative game in the semi-final (game 1136) and analyse it in more
detail.6

In this game, we compare our agent with FreeAgent and Mr.UMBC which were the
first and second placed agents in the final. Thus, in each such competition, we extracted
from the game data, details of the RFQs that were received by the competing agents,
the offers that they sent to the customers in response and the orders that resulted.7 This
data enabled us to compare the orders that the agents were winning with the prices that
they offered. Specifically, Figure 2 shows for each simulation day, the daily price (per
production cycle, see Figure 2(a)) offered by each agent and the cumulative orderquantity
that each agent won (expressed as factory production cycles averaged over all products see
Figure 2 (b)). Since the ultimate profitability of the agents depends on both these factors,
we also calculate the average cumulative revenue (i.e. the number of PC orders multiplied
by their prices, see Figure 2 (c)).

Throughout the game, SouthamptonSCM adaptively adjusts the price offered to the
customer to ensure that the factory maintains as close to full production as possible (the
factory utilisation for our agent, FreeAgent and Mr.UMBC are 76%, 58%, and 61%).
Generally, having a high factory utilisation means the agent can produce more PCs
and thus win more customer orders. For example, in this game, the number of orders
for these three agents are 5405, 4011, and 4300. In this example, all three agents have
sufficient components to allow them to compete for the same orders. However, our

5 We aim to compare the pricing model and the revenue made by responding to the customer
RFQs. Thus the price paid for the components and any late penalties need not be considered
here.

6 We did not choose a game from the final because of the skewing introduced by the Day 0
bidding strategies used by some of the agents. Also it is impossible to compare the pricing
of multiple games in one figure, thus we only show one representative game. However, the
following discussion also applies to the other games we analysed.

7 For clarity, we omit from this plot the other three agents, and just show data for Southampton-
SCM, FreeAgent and Mr.UMBC. The plots of the other agents show they were less effective.
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Fig. 2. Comparison of offer prices, quantity and revenue in game 1136

pricing model is particularly successful. The prices offered by SouthamptonSCM are
just low enough that the offers of the competing agents are undercut, but high enough
that the resulting orders generate as much revenue as possible.

After analysing more semi-final games, we found that the prices SouthamptonSCM
offers follow the same broad trend compared with the other two. And, in particular, the
trend is when the customer demand is high, the prices are high, and vice versa. This
can be seen from Figure 2 (a), where the demand for the first half of the game is high,
and the demand decreases gradually till Day 160 and increases again. Accordingly, the
prices are high before Day 110 and then start to decrease gradually. At the end of the
game, although the demand is increasing, the agents do not increase their prices because
they want to offload their stock. Moreover, in most of the games we considered, the
prices SouthamptonSCM offered just undercut the other two. This is also reflected by
the quantity of orders our agent won which was again usually the highest.

4.3 Controlled Experiments

To evaluate the performance of our agent in a more systematic fashion than is possible
in the competition, we decided to run a series of controlled experiments. As mentioned
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before, we attribute the success of our agent to the adaptive control of the offering price
and this is what we are most interested in here. Thus, we decided to analyse how the
pricing works compared with other methods. To do this, we devised two competitor
agents that adopt identical strategies to SouthamptonSCM except for the method they
use to offer prices. The alternative methods8 we consider are consistent with the broad
classes of behaviour that were adopted by several of the agents in the competition:

– High-Price agent (HP-agent). This agent bids aggressively at high offer prices to
obtain a higher profit margin in selling the PCs. It will take the risk of stocking
a large number of PCs and components in the factory and paying storage cost for
them. But when its PCs are sold they fetch high prices and mean it can very quickly
build up profits. In more detail, the prices that HP-agent offer are the maximum of
the cost of the computer plus a fixed profit margin (here it is 300) and the comput-
ers’ reserve price minus 1. Thus, when the reserve price is high enough, it sells at
reserve price minus 1. Otherwise, it sells at the price of the cost of components plus
a fixed margin.

– High-Volume agent (HV-agent). This agent bids cautiously and only seeks to at-
tain a reasonable profit margin for each order, but it tries to maximise the volume of
orders. This means that the agent wants to sell its PCs quickly and it does not want
to take the risk of stocking components or PCs (especially in games with low cus-
tomer demand). Specifically, it offers the computers at the cost of the computer plus
a small margin. Here the margin is set to 300 in the first 180 days of the game and
this is then decreased to 0 linearly till the end of the game. This policy is adopted
because the agent hopes that it can sell all the computers by the end of the game.

Besides these two kinds of agents, the other competing participants are the dummy
agents provided by the organisers. These use a build-to-order method and offer prices
which are chosen uniformly from 80 − 100% of the reserve prices. Generally, the
dummy agent can be viewed as being high-volume because it often offers a low price
(but it differs from our HV-agent in that it uses the build-to-order method). Given this
background, three groups of experiments were conducted to examine the performance
of each kind of agent in various situations. In experiment A, there is one Southamp-
tonSCM, one HP-agent, one HV-agent and three dummy agents. In experiment B, we
increase the number of HP-agents to 2 and decrease the number of dummy agents to 2.
In experiment C the number of HP-agents is 3 and the number of dummies is 1. The
average revenue of each kind of agent in each of the experiments are then plotted.9

8 Although neither alternative we chose employs market history information (i.e. the highest
and lowest transaction prices of the previous day), they represent the two common attitudes
for setting bidding prices: “High-Price” and “High-Volume”.

9 Note that the dummy agents in the game represent default players. We aim to evaluate the
performance of the other three types of agents instead of dummy agents. In order to obtain
valid results that represent realistic games, we varied the number of dummy agents and in
some games, there is only one dummy agent (e.g. experiment C). We believe this environment
is able to represent realistic games since even in real games there are some players who use
build-to-order like strategies.
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Fig. 3. Revenue of each kind of agent

We now start to analyse the performance of the different agents as shown in Fig-
ure 3.10 In experiment A, it can be seen that SouthamtptonSCM performs significantly
better than the other two agents and that the HP-agent is better than the HVs. In exper-
iment B, SouthamptonSCM is significantly better than both HP-agents and HV-agents
and the HP-agents are better than the RAs. In experiment C, SouthamptonSCM is sig-
nificantly better than the other two, however we cannot differentiate statistically which
agent is better between HP and HV agents. Now, in all cases, we can attribute this suc-
cess of SouthamptonSCM solely to the adaptivity aspect of its pricing (because this is
the only difference between the agents). Moreover, we found that the average revenue
SouthamptonSCM obtained is 49.7% higher than HP-agents in experiment A, 129.7%
higher in experiment B, and 58% higher in experiment C. This means, relatively speak-
ing, SouthamptonSCM does best in experiment B. It is interesting that there are more
HP-agents in experiment B than in A (i.e., our agent performs better in a more uncertain
environment). This further shows that the adaptivity of prices are effective in this case.
However, in experiment C, more agents use the Day-0 bidding strategy and this affects
all the agents greatly (see the discussion below).

10 Statistical significance is computed by a Student’s t-test and this shows all results are signifi-
cant (p < 0.05).
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Fig. 4. Comparison of offer prices, quantity and revenue in the controlled experiment

To understand better about how the pricing of SouthamptonSCM works, we further
observed for each simulation day, the daily price (Figure 4 (a)) offered by each agent
and the average daily order quantity that each agent won (Figure 4 (b)). These values
are averaged over all PC types. We then plot the average daily revenue (Figure 4 (c)).
Here, again, we take a randomly chosen representative game to show how the pricing
of these three kinds of agents operates. As expected, the prices that SouthamptonSCM
offers are roughly between the other two (below that of HP-agents and above that of
HV-agents). For an HV-agent, the offer prices are very low, thus, although it can sell a
large quantity of PCs, it cannot make much profit. Specifically, we found that the HV-
agent can almost always win orders (the ratio of the number of orders offered to the
quantity of orders won is almost 1 : 1 and the factory utilisation is almost 100%). For
the HP-agent, however, the prices are always high, meaning they build up a large stock
of PCs and components in the factory. Thus only a small number of their orders make
much profit although selling prices are high. Through adaptation, SouthamptonSCM
can make its offer prices high enough (sometimes the average prices are even higher
than HP-agents, see Figure 4 (a)), but, at the same time, guarantee a large number of
orders (see Figure 4 (b)). This is demonstrated by the fact that its factory utilisation is
almost 100%. Consequently, its revenue is higher than the other two (see Figure 4 (c)).
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Besides these observations about the performance of each agent, the following gen-
eral observations can be made. First, in all cases, the three kinds of agents perform much
better than the Dummy agents. This means that our Day-0 procurement strategy can be
viewed as being more effective than build-to-order procurement. This happens because
when the Dummy agent starts to order the components after it wins the customer order,
there will always be a delay between the delivery date the agent asks for and the real
one. Thus the Dummy agents are often penalised for being late or missing the delivery
deadline. Moreover, as shown in Figure 3, the more risky agents there are, the worse
the Dummy agent behaves.

Second, as more agents use the same broad strategy of Day-0 procurement, it is
more likely that there will be a bigger delay between the original delivery date and the
actual one (because each agent sends RFQs with a big quantity of components and the
production capability of the supplier is limited, see Section 3.1). Thus, this phenomena
greatly increases the uncertainty in the game and the performance of all the agents
are negatively affected, (i.e., the performance of all the agents is getting worse from
experiment A to B and B to C). This can be seen clearly in Figure 3 and explains why
SouthamtptonSCM sometimes got the second or third position in a game. Through the
analysis of the game data, we found that in those games, there is a significant delay in
the component delivery and the factory stops working for about 20 days. This is also
what happened in the final of the competition (as detailed in Section 4.1).

Third, as more agents use the high-price strategy, the performance of the HP-agents is
more negatively affected. This happens because the HP-agents are mutually destructive.
In this situation (e.g., in experiment C), although HP-agents sell PCs at high prices, the
quantity of PCs sold is not sufficient to make up the cost they have spent on the materials
of the PCs they produce. In contrast, HV-agents sell many PCs at reasonably low prices
and their revenue remains high. Thus, as we can see in Figure 3 (c), it is sometimes the
case that the HV-agent is doing the best.

Fourth, the agent that can best adapt its offer price to the changing environment will
thrive best in the game. This is because the random nature of the customer demand
and the strategies of other participants make the environment highly unpredictable in
terms of what is the appropriate price to set for the PCs. As can be seen from the above
experiments, neither the agent that seeks a high price, nor the one that only pursues
a fixed margin are effective in all cases. Thus adaptivity is a critical requirement for
effective performance in dynamic games.

5 Conclusions

This paper provides a number of insights into building agents for supply chain appli-
cations. Specifically, it details the design, implementation and evaluation of Southamp-
tonSCM; an agent that successfully participated in the 2004 trading agent competition.
The agent employs fuzzy techniques at its core. In particular, it uses fuzzy reasoning to
determine how to set prices according to its inventory level, the market demand and the
time into the game. Moreover, the parameters involved in the fuzzy rules can be adapted
according to the quantity of the received customer orders and the expected number of
orders so as to maximise the factory utilisation. To evaluate the efficiency of our pricing
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model, we analysed actual competition games and conducted controlled experiments
where we compete our agents with various numbers of high-price and high-volume
agents. The actual game analysis shows that our agent is able to obtain a high revenue
by offering high prices that are, nevertheless, low enough to win customer orders. In the
controlled experiments, we show that in all environments we considered, Southamp-
tonSCM is significantly better than the other two kinds of agents (with highest average
performance and lowest variance). When taken together, these evaluations show that
out pricing model is both efficient and robust.

We also believe several aspects of our agent design and strategy are applicable out-
side the confines of this competition. First of all, the general idea of the component
agent is to periodically request large orders to cover the baseline quantities needed in
low demand (steady state) markets and, at the same time, buy smaller amounts of sup-
plies when the selling price is low during the rest of the production. This mixture of
baseline and opportunistic purchasing behaviour is a common strategy in this domain
and the technology we develop for achieving this can be readily transferred. Second, we
believe our pricing model technology will also be useful in real SCM applications where
just undercutting competitors’ prices can significantly improve profitability. Specifi-
cally, to apply our model in other domains, the designers of the rule base would need
to adapt the fuzzy rules to reflect the factors that are relevant to their domain. Now we
believe that customer demand and inventory level are highly likely to be critical factors
for almost all cases and thus these rules can remain unaltered. However, the time into
the game is not so broadly applicable since there is not always a rigidly fixed deadline
to real life supply chains (thus some changes may be needed here). Third, the strategy
employed by the factory agent for managing resources in uncertain and dynamically
changing environments is generally applicable. In this case, it incorporates little in the
way of domain specific knowledge and so it can remain broadly as is.
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A Rule Base for the First 180 Days

1. IF D is high and I is high and ND is far THEN r is big.
2. IF D is high and I is medium and ND is far THEN r is big.
3. IF D is high and I is low and ND is far THEN r is very-big.
4. IF D is medium and I is high and ND is far THEN r is medium.
5. IF D is medium and I is medium and ND is far THEN r is medium.
6. IF D is mediium and I is low and ND is far THEN r is big.
7. IF D is low and I is high and ND is far THEN r is small.
8. IF D is low and I is medium and ND is far THEN r is small.
9. IF D is low and I is low and ND is far THEN r is medium.

10. IF D is high and I is high and ND is close THEN r is medium.
11. IF D is high and I is medium and ND is close THEN r is big.
12. IF D is high and I is low and ND is close THEN r is very-big.
13. IF D is medium and I is high and ND is close THEN r is small.
14. IF D is medium and I is medium and ND is close THEN r is medium.
15. IF D is mediium and I is low and ND is close THEN r is big.
16. IF D is low and I is high and ND is close THEN r is very-small.
17. IF D is low and I is medium and ND is close THEN r is small.
18. IF D is low and I is low and ND is close THEN r is medium.
19. IF D is high and I is high and ND is medium THEN r is big.
20. IF D is high and I is medium and ND is medium THEN r is big.
21. IF D is high and I is low and ND is medium THEN r is very-big.
22. IF D is medium and I is high and ND is medium THEN r is medium.
23. IF D is medium and I is medium and ND is medium THEN r is medium.
24. IF D is mediium and I is low and ND is medium THEN r is big.
25. IF D is low and I is high and ND is medium THEN r is small.
26. IF D is low and I is medium and ND is medium THEN r is small.
27. IF D is low and I is low and ND is medium THEN r is medium.
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B Rule Base for the Last 40 Days of the Game

1. IF D is high and I is high and E is far THEN r is big.
2. IF D is high and I is medium and E is far THEN r is big.
3. IF D is high and I is low and E is far THEN r is very-big.
4. IF D is medium and I is high and E is far THEN r is medium.
5. IF D is medium and I is medium and E is far THEN r is medium.
6. IF D is medium and I is low and E is far THEN r is big.
7. IF D is low and I is high and E is far THEN r is small.
8. IF D is low and I is medium and E is far THEN r is small.
9. IF D is low and I is low and E is far THEN r is medium.

10. IF D is high and E is close THEN r is very-small.
11. IF D is medium and E is close THEN r is small.
12. IF D is low and E is close THEN r is small.
13. IF D is high and I is high and E is medium THEN r is big.
14. IF D is high and I is medium and E is medium THEN r is big.
15. IF D is high and I is low and E is medium THEN r is very-big.
16. IF D is medium and I is high and E is medium THEN r is medium.
17. IF D is medium and I is medium and E is medium THEN r is medium.
18. IF D is medium and I is low and E is medium THEN r is big.
19. IF D is low and I is high and E is medium THEN r is small.
20. IF D is low and I is medium and E is medium THEN r is small.
21. IF D is low and I is low and E is medium THEN r is medium.
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Abstract. We systematically explore a range of variations of our TAC travel-
shopping agent, Walverine. The space of strategies is defined by settings to be-
havioral parameter values. Our empirical game-theoretic analysis is facilitated
by approximating games through hierarchical reduction methods. This approach
generated a small set of candidates for the version to run in the TAC-05 tour-
nament. We selected among these based on performance in preliminary rounds,
ultimately identifying a successful strategy for Walverine 2005.

1 Introduction

There are many ways to play the TAC travel-shopping game. Our agent, Walverine [1],
employs competitive analysis to predict hotel prices and formulate an optimal bidding
problem. Other agents take different approaches to predicting hotel prices [2], bidding
under uncertainty [3], and many other facets of TAC. Even within a particular approach
to a particular subproblem, there is no end to possible variations one might consider,
ranging from fine-tuning of policy parameters to qualitatively different strategies.

Like most TAC participants, we apply a mix of modeling and experimentation in de-
veloping our agent. Since our models of the TAC environment necessarily simplify the
actual game, we rely on experimental offline trials to validate the ideas and set param-
eters. And since these offline experiments incorporate assumptions about other agents’
behavior, we also depend on online experiments (e.g., during preliminary tournament
rounds) to test our designs in the most realistic setting available. Also like most other
participants (with the notable exception of Whitebear [4], discussed below), our com-
bination of modeling and experimentation was essentially ad hoc, with only informal
procedures for fixing a particular agent behavior based on the results.

For 2005 (following a preliminary effort for 2004), we decided to adopt a more
systematic approach. The first element of our method is fairly standard: define a space of
strategies to consider by parametrizing the baseline agent Walverine. We then explore
the space through extensive simulation. A less conventional element of our method
is that we use the simulation results to estimate an empirical game, and apply standard
game-theoretic analysis to derive strategic equilibria. The particularly novel element we
introduce in the current work is hierarchical game reduction, a general technique for
approximating symmetric games by smaller games with fractional numbers of agents.
In this instance, we show that 4-player and 2-player reductions of the TAC game are far
more manageable than the full 8-player game, and argue that little fidelity is lost by the
reduction proposed here.

H. La Poutré, N. Sadeh, and S. Janson (Eds.): AMEC and TADA 2005, LNAI 3937, pp. 157–170, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In the next section we illustrate the parametrization of strategy space by describ-
ing some of Walverine’s key parameters. Section 3 appeals to the TAC literature to
demonstrate the importance of accounting for strategic interactions in evaluating agent
designs. We describe the explosion of strategy profile space in Section 4, and introduce
our hierarchical reduction operator. Results from our empirical game-theoretic analysis
to date are summarized in Section 5.1 The remaining sections describe our selection of
a particular strategy for TAC-05, and report results.

2 Walverine Parameters

TAC travel-shopping is an 8-player symmetric game, with a complex strategy space and
pivotal agent interactions. Strategies include all policies for bidding on flights, hotels,
and entertainment over time, as a function of prior observations. To focus our search,
we restrict attention to variations on our basic Walverine strategy [1], as originally
developed for TAC-02 and refined incrementally for 2003 and 2004.

We illustrate some of the possible strategy variations by describing some of the pa-
rameters we have exposed to the calling interface. To invoke an instance of Walverine,
the user specifies parameter values dictating which version of the agent’s modules to
run, and what arguments to provide to these modules.

2.1 Flight Purchase Timing

Flight prices follow a random walk with a bias that is determined by a hidden parameter
that is chosen randomly at the start of the game. Specifically, at the start of each game,
a hidden parameter x is chosen from the integers in [−10, 30]. Define x(t) = 10 +
(t/9:00)(x − 10). Every 10 seconds thereafter, given elapsed time t, flight prices are
perturbed by a value chosen uniformly, with bounds [lb, ub] determined by

[lb, ub] =

⎧⎨⎩
[x(t), 10] if x(t) < 0,
[−10, 10] if x(t) = 0,
[−10, x(t)] if x(t) > 0.

(1)

Whereas flight price perturbations are designed to increase in expectation given no in-
formation about the hidden parameter, conditional on this parameter prices may be
expected to increase, decrease, or stay constant.

Walverine maintains a distribution Pr(x) for each flight, initialized to be uniform
on [-10,30], and updated using Bayes’s rule given the observed perturbations ∆ at each
iteration: Pr(x|∆) = α Pr(x) Pr(∆|x), where α is a normalization constant.

Given this distribution over the hidden x parameter, the expected perturbation for the
next iteration, E[∆′|x], is simply (lb+ub)/2, with bounds given by (1). Averaging over
the distribution for x, we have E[∆′] =

∑
x Pr(x)E[∆′|x].

Given a set of flights that Walverine has calculated to be in the optimal package,
it decides which to purchase now as a function of the expected perturbations, current

1 Another paper presenting the hierarchical game-reduction idea and appealing to the TAC case
study was presented at AAAI-05 [5]; some of the material in Sections 4 and 5 also appears in
that work.
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holdings, and marginal flight values. On a high level, the strategy is designed to defer
purchase of flights that are not quickly increasing, allowing for flexibility in avoiding
expensive hotels as hotel price information is revealed.

The flight purchase strategy can be described in the form of a decision tree as de-
picted in Figure 1. First, Walverine compares the expected perturbation (E[∆′]) with
a threshold T 1, deferring purchase if the prices are not expected to increase by T 1 or
more. If T 1 is exceeded, Walverine next compares the expected perturbation with a
second higher threshold, T 2, and if the prices are expected to increase by more than T 2
Walverine purchases all units for that flight that are in the optimal package.

E[ ] < T1?

E[ ] > T2?

Reducible trip AND
#clients > T3?

First ticket AND
surplus > T4?

DELAY

DELAY

BUY

BUY

BUY

Y N

Y N

Y N

Y N

Fig. 1. Decision tree for deciding whether to delay flight purchases

If T 1 < E[∆′] < T 2, the Walverine flight delay strategy is designed to take into
account the potential benefit of avoiding travel on high demand days. Walverine checks
whether the flight constitutes one end of a reducible trip: one that spans more than
a single day. If the trip is not reducible, Walverine buys all the flights. If reducible,
Walverine considers its own demand (defined by the optimal package) for the day that
would be avoided through shortening the trip, equivalent to the day of an inflight, and
the day before an outflight. If our own demand for that day is T 3 or fewer, Walverine
purchases all the flights. Otherwise (reducible and demand greater than T 3), Walverine
delays the purchases, except possibly for one unit of the flight instance, which it will
purchase if its marginal surplus exceeds another threshold, T 4.

Though the strategy described above is based on sound calculations and tradeoff
principles, it is difficult to justify particular settings of threshold parameters without
making numerous assumptions and simplifications. Therefore we treat these as strategy
parameters, to be explored empirically, along with the other Walverine parameters.

2.2 Bid Shading

The Walverine optimal shading algorithm [1] identifies, for each hotel auction, the bid
value maximizing expected utility based on a model of other agents’ marginal value
distributions. Because this optimization is based on numerous simplifications and ap-
proximations, we include several parameters to control its use.
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Through a shading mode parameter, bid shading can be turned off, in which case
Walverine bids its marginal value. Another parameter defines a shade percentage, spec-
ifying a fixed fraction to bid below marginal value. There are two modes corresponding
to the optimal shading algorithm, differing in how they model the other agents’ value
distributions. In the first, the distributions are derived from a simplified competitive
analysis. For this mode, another parameter, shade model threshold turns off shading in
case the model appears too unlikely given the price quote. Specifically, we calculate
the probability that the 16th highest bid is greater than or equal to the quote according
to the modeled value distributions, and if too low we refrain from using the model for
shading. For the second optimal shading mode, instead of the competitive model we
employ empirically derived distributions keyed on the hotel closing order.

2.3 Entertainment Trading

We choose among a discrete set of policies for trading entertainment. As a baseline, we
implemented the strategy employed by livingagents in TAC-01 [6]. We also applied re-
inforcement learning to derive policies from scratch, expressed as functions of marginal
valuations and various additional state variables. The policy employed by Walverine
in TAC-02 was derived by Q-learning over a discretized state space. For TAC-03 we
learned an alternative policy, this time employing a neural network to represent the
value function. Our analysis of other agents indicated that Whitebear performs partic-
ularly well in entertainment trading. Therefore, we also implemented an entertainment
module based on the Whitebear policy,2 adapted for the Walverine architecture.

2.4 Other Parameters

Walverine predicts hotel prices based on competitive equilibrium analysis [2]. The
result, however, does not account for uncertainty in the predictions. We developed a
simple method to hedge on our price estimates, by assigning an outlier probability to
the event that a hotel price will be much greater than predicted. We can hedge to a
greater or lesser degree by modifying this outlier parameter.

Given a price distribution, one could optimize bids with respect to the distribution
itself, or with respect to the expected prices induced by the distribution. Although the
former approach is more accurate in principle, necessary compromises in implementa-
tion render it ambiguous in practice which produces superior results [2,3,7]. Thus, we
include a parameter controlling which method to apply in Walverine.

Several agent designers have reported employing priceline predictions, accounting
for the impact of one’s own demand quantity on price. We implemented a version of
the completion algorithm [8] that optimizes with respect to pricelines, and included it
as a Walverine option. A further parameter selects how price predictions and optimiza-
tions account for outstanding hotel bids in determining current holdings. In one setting
current bids for open hotel auctions are ignored, and in another the current hypothetical
winnings are treated as actual holdings.

2 Thanks to Ioannis Vetsikas for providing a version of the 2003 source code for Whitebear.
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3 Strategic Interactions in TAC Travel

TAC agents interact in the markets for each kind of good, as competing buyers or po-
tential trading partners. Based on published accounts, TAC participants design agents
given specified game rules, and then test these designs in the actual tournaments as well
as offline experiments. The testing process is crucial, given the lack of any compact an-
alytical model of the domain. During testing, agent designers explore variations on their
agent program, for example by tuning parameters or toggling specific agent features.

That strategic choices interact has been frequently noted in the TAC literature. A re-
port on the first TAC tournament [9] observes that the strategy of bidding high prices
for hotels performed reasonably in preliminary rounds, but poorly in the finals when
more agents were high bidders (thus raising final prices to unprofitable levels). Stone
et al. [10] evaluate their agent ATTac-2000 in controlled post-tournament experiments,
measuring relative scores in a range of contexts, varying the number of other agents
playing high- and low-bidding strategies. A report on the 2001 competition [11] con-
cludes that the top scorer, livingagents, would perform quite poorly against copies of
itself. The designers of SouthamptonTAC [12] observed the sensitivity of their agent’s
TAC-01 performance to the tendency of other agents to buy flights in advance, and
redesigned their agent for TAC-02 to attempt to classify the competitive environment
faced and adapt accordingly [13]. ATTac-2001 explicitly took into account the iden-
tity of other agents in training its price-prediction module [7]. To evaluate alternative
learning mechanisms through post-competition analysis, Stone et al. recognized the ef-
fect of the policies on the outcomes being learned, and thus adopted a carefully phased
experimental design in order to account for such effects.

One issue considered by several TAC teams is how to bid for hotels based on pre-
dicted prices and marginal utility. Greenwald and Boyan [3] have studied this in depth,
performing pairwise comparisons of four strategies, in profiles with four copies of each
agent.3 Their results indicate that absolute performance of a strategy indeed depends
on what the other agent plays. We examined the efficacy of bid shading in Walverine,
varying the number of agents employing shading or not, and presented an equilibrium
shading probability based on these results [14].

By far the most extensive experimental TAC analysis reported to date is that per-
formed by Vetsikas and Selman [4]. In the process of designing Whitebear for TAC-
02, they first identified candidate policies for separate elements of the agent’s overall
strategy. They then defined extreme (boundary) and intermediate values for these partial
strategies, and performed systematic experiments according to a deliberately considered
methodology. Specifically, for each run, they fix a particular number of agents playing
intermediate strategies, varying the mixture of boundary cases across the possible range.
In all, the Whitebear experiments comprised 4500 game instances, with varying even
numbers of candidate strategies (i.e., profiles of the 4-player game). Their design was
further informed by 2000 games in the preliminary tournament rounds. This system-
atic exploration was apparently helpful, as Whitebear was the top scorer in the 2002
tournament. This agent’s predecessor version placed third in TAC-01, following a less

3 In our terminology introduced below, their trials focused on the 2-player reduced version of
the game.
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comprehensive and structured experimentation process. Its successor placed third again
in 2003, and regained its first-place standing in 2004. Since the rules were adjusted for
TAC-04, this most recent outcome required a new regimen of experiments.

4 Hierarchical Game Reduction

4.1 Motivation

Suppose that we manage to narrow down the candidate Walverine variants to a reason-
able number of strategies (say 40). Because the performance of a strategy for one agent
depends on the strategies of the other seven, we wish to undertake a game-theoretic
analysis of the situation. Determining the payoff for a particular strategy profile is ex-
pensive, however, as each game instance takes nine minutes to run, plus another minute
or two to calculate scores, compile results, and set up the next simulation. Moreover,
since the environment is stochastic, numerous samples (say 12) are required to produce
a reliable estimate for even one profile. At roughly two hours per profile, exhaustively
exploring profile space will require 2 · 408 or 13 trillion hours simply to estimate the
payoff function representing the game under analysis. If the game is symmetric, we can
exploit that fact to reduce the number of distinct profiles to

(47
8

)
, which will require 628

million hours. That is quite a bit less, but still much more time than we have.
The idea of hierarchical game reduction is that although a strategy’s payoff does

depend on the play of other agents (otherwise we are not in a game situation at all),
it may be relatively insensitive to the exact numbers of other agents playing particular
strategies. For example, let (s, k; s′) denote a profile where k other agents play strategy
s, and the rest play s′. In many natural games, the payoff for the respective strategies
in this profile will vary smoothly with k, differing only incrementally for contexts with
k ± 1. If such is the case, we sacrifice relatively little fidelity by restricting attention to
subsets of profiles, for instance those with only even numbers of any particular strategy.
To do so essentially transforms the N -player game to an N/2-player game over the
same strategy set, where the payoffs to a profile in the reduced game are simply those
from the original game where each strategy in the reduced profile is played twice.

The potential savings from reduced games are considerable, as they contain combi-
natorially fewer profiles. The 4-player approximation to the TAC game (with 40 strate-
gies) comprises 123,410 distinct profiles, compared with 314 million for the original
8-player game. In case exhaustive consideration of the 4-player game is still infeasi-
ble, we can approximate further by a corresponding 2-player game, which has only 840
profiles. Approximating by a 1-player game is tantamount to ignoring strategic effects,
considering only the 40 profiles where the strategies are played against themselves.
In general, an N -player symmetric game with S strategies includes

(
N+S−1

N

)
distinct

profiles. Figure 2 shows the exponential growth in both N and S.

4.2 Hierarchy of Reduced Games

We develop our hierarchical reduction concepts in the framework of symmetric normal-
form games.
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Fig. 2. Number of distinct profiles (log scale) of a symmetric game, for various numbers of players
and strategies

Definition 1. Γ = 〈N, {Si}, {ui()}〉 is an N -player normal-form game, with strategy
set Si the available strategies for player i, and the payoff function ui(s1, . . . , sN ) giv-
ing the utility accruing to player i when players choose the strategy profile (s1, . . . , sN).

Definition 2. A normal-form game is symmetric if the players have identical strategy
spaces (S1 = · · · = SN = S) and ui(si, s−i) = uj(sj , s−j), for si = sj and s−i =
s−j for all i, j ∈ {1, . . . , N}. Thus we can write u(t, s) for the payoff to any player
playing strategy t when the remaining players play profile s. We denote a symmetric
game by the tuple 〈N, S, u()〉.
Our central concept is that of a reduced game.

Definition 3. Let Γ = 〈N, S, u()〉 be an N -player symmetric game, with N = pq for
integers p and q. The p-player reduced version of Γ , written Γ↓p, is given by 〈p, S, û()〉,
where

ûi(s1, . . . , sp) = uq·i(s1, . . .︸ ︷︷ ︸
q

, s2, . . .︸ ︷︷ ︸
q

, . . . , sp, . . .︸ ︷︷ ︸
q

).

In other words, the payoff function in the reduced game is obtained by playing the
specified profile in the original q times.

The idea of a reduced game is to coarsen the profile space by restricting the degrees of
strategic freedom. Although the original set of strategies remains available, the number
of agents playing any strategy must be a multiple of q. Every profile in the reduced
game is one in the original game, of course, and any profile in the original game can
be reached from a profile contained in the reduced game by changing at most p(q − 1)
agent strategies.

The premise of our approach is that the reduced game will often serve as a good
approximation of the full game it abstracts. We know that in the worst case it does not.
In general, an equilibrium of the reduced game may be arbitrarily far from equilibrium
with respect to the full game, and an equilibrium of the full game may not have any
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near neighbors in the reduced game that are close to equilibrium there. Elsewhere we
provide evidence that the hierarchical reduction provides an effective approximation in
several natural game classes [5]. Intuition suggests that it should apply for TAC, and the
basic agreement between TAC↓2 and TAC↓4 seen in our results tends to support that
assessment.

5 TAC Experiments

To apply reduced-game analysis to the TAC domain, we identified a restricted set of
strategies, defined by setting parameters for Walverine. We considered a total of 40
distinct strategies, covering variant policies for bidding on flights, hotels, and entertain-
ment. We collected data for a large number of games: over 47,000 as of the start of
the TAC-05 finals, representing over one year of (almost continuous) simulation.4 Each
game instance provides a sample payoff vector for a profile over our restricted strategy
set.

Table 1 shows how our dataset is apportioned among the 1-, 2-, and 4-player reduced
games. We are able to exhaustively cover the 1-player game, of course. We could also
have exhausted the 2-player profiles, but chose to skip some of the less promising ones
(around one-quarter) in favor of devoting more samples elsewhere. The available num-
ber of samples could not cover the 4-player games, but as we see below, even 1.7% is
sufficient to draw conclusions about the possible equilibria of the game. Spread over
the 8-player game, however, 47,000 instances would be insufficient to explore much,
and so we refrain from any sampling of the unreduced game.

Table 1. Profiles evaluated, reduced TAC games (TAC↓p)

p Profiles Samples/Profile
total evaluated % min mean

4 123,410 2114 1.7 12 22.3
2 840 586 71.5 15 31.7
1 40 40 100.0 25 86.5

In the spirit of hierarchical exploration, we sample more instances per profile as the
game is further reduced, obtaining more reliable statistical estimates of the coarse back-
bone relative to its refinement. On introducing a new profile we generate a minimum
required number of samples, and subsequently devote further samples to particular pro-
files based on their potential for influencing our game-theoretic analysis. The sampling
policy employed was semi-manual and somewhat ad hoc, driven in an informal way by

4 Our simulation testbed comprises two dedicated workstations to run the agents, another RAM-
laden four-CPU machine to run the agents’ optimization processes, a share of a fourth machine
to run the TAC game server, and background processes on other machines to control the ex-
periment generation and data gathering. We have continued to run the testbed since the tourna-
ment, accumulating over 56,000 games as of this writing. Results presented here correspond
to a snapshot at the end of July 2005, right before the final tournament.
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analyses of the sort described below on intermediate versions of the dataset. Developing
a fully automated and principled sampling policy is the subject of future research.

5.1 Control Variates

Since we estimate the payoffs (expected scores) by Monte Carlo simulation, there
are several off-the-shelf variance reduction techniques that can be applied. One is the
method of control variates [15], which improves the estimate of the mean of a random
function by exploiting correlation with observable random variables. In our case the
function is the entire game server plus eight agents playing a particular strategy pro-
file, evaluating to a vector of eight scores. Random factors in the game include hotel
closing order, flight prices, entertainment ticket endowment, and, most critically, client
preferences. The idea is to replace sampled scores with scores that have been “adjusted
for luck”. For example, an agent whose clients had anomolously low hotel premiums
would have its score adjusted upward as a handicap. Or in a game with very cheap flight
prices, all the scores would be adjusted downward to compensate. Such adjustments re-
duce variance at the cost of potentially introducing bias. Fortunately, the bias goes to
zero as the number of samples increases [16].

For the analysis reported here, we adjust scores based on the following control vari-
ables (for a hypothetical agent A):

– ENT: Sum of A’s clients’ entertainment premiums (8 · 3 = 24 values). E[ENT] =
2400.

– FLT: Sum of initial flight quotes (8 values; same for all agents). E[FLT] = 2600.
– WTD: Weighted total demand: Total demand vector (for each night, the number of

the 64 clients who would be there that night if they got their preferred trips) dotted
with the demand vector for A’s clients. E[WTD] = 540.16.

– HTL: Sum of A’s clients’ hotel premiums (8 values). E[HTL] = 800.

The expectations are determined analytically based on specified game distributions.
Given the above, we adjust an agent’s score by subtracting

βENT(ENT− E[ENT]) + βFLT(FLT− E[FLT])
+ βWTD(WTD − E[WTD])
+ βHTL(HTL− E[HTL]),

where the βs are determined by performing a multiple regression from the control vari-
ables to score using a data set consisting of 2190 games. Using adjusted scores in lieu
of raw scores reduces overall variance by 22 based on a sample of 9000 all-Walverine
games.

We have also estimated the coefficients based on the 107 games in the TAC Travel
2004 semi-finals and finals and have proposed these as the basis for official score ad-
justments for the competition:

– βENT = 0.349
– βFLT = −1.721
– βWTD = −2.305
– βHTL = 0.916
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Note that we can see from these coefficients that it improves an agent’s score some-
what to have clients with high entertainment premiums, it hurts performance to be in a
game with high flight prices, it hurts to have clients that prefer long trips (particularly
when other agents’ clients do as well), and finally, having clients with high hotel premi-
ums improves score. Applying the score adjustment formula to the 2004 finals yields a
reduction in variance of 9%.

5.2 Results

A detailed presentation of an earlier snapshot of our experimental results, along with
game-theoretic analysis, is provided elsewhere [5]. Here we present only a brief sum-
mary. A final account based on the ongoing simulations is forthcoming.

Analysis of the TAC↓1 “game” tells us which strategy performs best assuming it
plays with copies of itself. We included a strategy (S34) designed to do well in this
context: it shades all hotel bids by a fixed 50% rate. This indeed performs best, by
about 250 points, since the result is very low hotel prices. However, the profile is quite
unstable, as an agent who shades less can get much better hotel rooms, but still benefit
from the low prices. Thus, this is not nearly an equilibrium in the less-reduced games.

With over 70% of profiles evaluated, we have a reasonably complete description of
the two-player game, TAC↓2, among our 40 strategies. At this point in the experiment,
we identified ten candidate strategy profiles that represent pure ε-Nash equilibria, for
ε ≤ 27. Four of these were confirmed, meaning that all deviations had been evaluated.
We also identified 41 symmetric mixed-strategy profiles in equilibrium. Less than 1/3
of the considered strategies participate with probability exceeding 0.15 in some equi-
librium found.

Results for TAC↓4 must be considered relatively tentative. Based on the profiles eval-
uated, we can identify a few good candidate equilibrium mixtures over pairs of strate-
gies. Further simulation in the next few months may confirm or refute these, or identify
additional candidates. With a few exceptions, strategies and combinations evaluated as
stable in TAC↓2 tend to produce similar results in TAC↓4.

Analysis of the reduced games does validate the importance of strategic interactions.
As noted above, the best strategy in self-play, S34, is not nearly a best response in most
other environments, though it does appear in a few mixed-strategy equilbria of TAC↓2.
Strategy S34 achieves a payoff of 4302 in self-play. For comparison:

– The top scorer in the 2004 tournament, Whitebear, averaged 4122.
– The best payoff we found in TAC↓2 in a two-action mixed-strategy equilibrium

candidate is 4220 (and this involves playing S34 with probability 0.4).
– The best corresponding equilibrium payoff we have found in TAC↓4 is 4031. No

such equilibrium includes S34.

6 Walverine 2005

Given all this simulation and analysis, how can we determine the “best” strategy to
play in TAC? We do have strong evidence for expecting that all but a fraction of the
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original 40 strategies will turn out to be unstable within this set. The supports of can-
didate equilibria tend to concentrate on a fraction of the strategies, suggesting we may
limit consideration to this group. Thus, we employ the preceding analysis primarily
to identify promising strategies, and then refine this set through further evaluation in
preliminary rounds of the actual TAC tournament.

For the first stage—identifying promising strategies—the 1-player game is of little
use. Even discounting strategy S34 (the best strategy in the 1-player game, specially
crafted to do well with copies of itself) our experience suggests that strategic interaction
is too fundamental to TAC for performance in the 1-player game to correlate more
than loosely with performance in the unreduced game. The 4-player game accounts for
strategic interaction at a fine granularity, being sensitive to deviations by as few as two
of the eight agents. The 2-player game could well lead us astray in this respect. For
example, that strategy S34 appears in mixed-strategy equilibria in the 2-player game is
likely an artifact of the coarse granularity of that approximation to TAC.

Cooperative strategies like S34 might well survive when deviations comprise half
the players in the game, but in the unreduced game we would expect them to be far
less stable. Nonetheless, the correlation between the 2- and 4-player game is high. Fur-
thermore, we have a much more complete description of the 2-player game, with more
statistically meaningful estimates of payoffs. Finally, empirical payoff matrices for the
2-player game are far more amenable to our solution techniques, in particular, exhaus-
tive enumeration of symmetric (mixed) equilibria by GAMBIT [17]. For all of these
reasons, we focus on the 2-player game for choosing our final Walverine strategies,
augmenting our selections with strategies that appear promising in TAC↓4.

Informally, our criteria for picking strong strategies include presence in many equi-
libria and how strongly the strategy is supported. We start with an exhaustive list of all
symmetric equilibria in all cliques of TAC↓2, filtered to exclude any profiles that are
refuted in the full game (considering all strategies, not just those in the cliques). There
are 68 of these. We next operationalize our criteria for promising strategies with three
metrics that we can use to rank strategies given an exhaustive list of equilibria in all
cliques of the 2-player game:

– number of equilibria in which the strategy is supported
– maximum mixture probability with which the strategy appears
– sum of mixture probabilities across all equilibria

Based primarily on these metrics, we chose {4, 16, 17, 35} as the most promising
candidates, and added {3, 37, 39, 40} based on their promise in TAC↓4. Figure 3 re-
veals strategies 37 and 40 to be the top two candidates after the seeding rounds. In
the semifinals we played 37 and 40 and found that 37 outperformed 40, 4182 to 3945
(p = .05). Based on this, we played 37 as the Walverine strategy for the finals in
TAC-05.

7 TAC 2005 Outcome

Officially, Walverine placed third, based on the 80 games of the 2005 finals. In part this
reflected some poor luck, as a network glitch early that morning at Michigan caused our
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Fig. 3. Performance of eight Walverine variants in the TAC-05 seeding rounds (507 games)

agent to miss two games. Moreover, it was clear to all present that the first 22 games
were tainted, due to a serious malfunction by RoxyBot.5 Since games with erratic agent
behavior add noise to the scores, the TAC operators published unofficial results with the
errant RoxyBot games removed (Table 2). Walverine’s missed games occurred during
those games, so removing them corrects both sources of our bad luck, and renders
Walverine the top-scoring agent.

Table 2. Scores, adjusted scores, and 95% mean confidence intervals on control variate adjusted
scores for the 58 games of the TAC Travel 2005 finals, after removing the first 22 tainted games.
(LearnAgents experienced network problems for a few games, accounting for their high variance
and lowering their score.)

Agent Raw Score Adjusted Score 95% C.I.
Walverine 4157 4132 ± 138
RoxyBot 4067 4030 ± 167
Mertacor 4063 3974 ± 152
Whitebear 4002 3902 ± 130
Dolphin 3993 3899 ± 149
SICS02 3905 3843 ± 141
LearnAgents 3785 3719 ± 280
e-Agent 3367 3342 ± 117

Figure 4 shows the adjusted scores with error bars. Walverine beat the runner up
(RoxyBot) at the p = 0.17 significance level. Regardless of the ambiguity (statisti-
cal or otherwise) of Walverine’s placement in the competition, we consider its strong
performance under real tournament conditions to be evidence (albeit limited) of the
efficacy of our approach to strategy generation in complex games such as TAC.

5 The misbehavior was due to a simple human error: instead of playing a copy of the agent on
each of the two game servers per the tournament protocol, the RoxyBot team accidentally set
both copies of the agent to play on the same server. RoxyBot not only failed to participate in
the first server’s games, but placed double bids in games on the other server.
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8 Conclusion

Games as complex as TAC Travel generally present agent designers with a wealth
of policy choices, not amenable to analytic optimization. The typical recourse is to
experiment-guided search through a limited design space. We likewise follow such an
approach, but attempt to introduce some systematic game-theoretic reasoning to the
process. Our year-long search through the space of parametrized Walverine profiles
helped us to sort through 40 candidate strategies. Empirical game-theoretic analysis
justified pruning this set to a more manageable number we could test during the prelim-
inary rounds. This testing in turn proved valuable, as the leading contenders based on
tournament play appeared substantially better than some others surviving our testbed
analysis. In the end, our selected Walverine strategy performed ably in the 2005 tour-
nament, placing third officially and first after removing tainted games.

To further systematize the process, we require principled techniques for generating
parameter settings, and automating the selection of profiles to sample. This is the subject
of ongoing research, including continuing exploration of the space of strategies for the
TAC travel-shopping game.
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Abstract. In this paper, we present a novel multi-layered framework for design-
ing strategies for trading agents. The objective of this work is to provide a frame-
work that will assist strategy designers with the different aspects involved in de-
signing a strategy. At present, such strategies are typically designed in an ad-hoc
and intuitive manner with little regard for discerning best practice or attaining re-
usability in the design process. Given this, our aim is to put such developments
on a more systematic engineering footing. After we describe our framework, we
then go on to illustrate how it can be used to design strategies for a particular type
of market mechanism (namely the Continuous Double Auction), and how it was
used to design a novel strategy for the Travel Game of the International Trading
Agent Competition.

1 Introduction

The last decade has seen a significant change in the nature of electronic commerce with
the emergence of economic software agents [11]: rational players that are capable of
autonomous and flexible actions to achieve their objectives [12] and that are endowed
with sophisticated strategies for maximising utility and profit on behalf of their human
owners. Today, electronic trading markets1 allow access to a plenitude of information
that enables such software agents to be more informed and respond more efficiently
than humans could ever hope to. Now, such trading markets are governed by protocols
that define the rules of interaction amongst the economic agents. In some cases, these
protocols have a clearly optimal strategy. For example in the Vickrey auction, the best
strategy is to reveal one’s true valuation of the item and for English auctions it is to bid
up to one’s true valuation in small increments. However, in other settings, the analyses
yielding these best strategies often make use of a range of restrictive assumptions; rang-
ing from analysing the market in isolation (i.e. not taking into account dependencies on
other related markets), to assumptions on the agent behaviour (such as perfect and com-
plete information availability). Furthermore, several of the standard market mechanisms
have been modified or certain complex mechanisms may have been implemented such
that an analytical approach cannot yield a best strategy. For example, in eBay auctions2

1 An electronic trading market is here defined as an online institution in which there is an ex-
change of resources or services using a currency as the trading token. Such markets range from
auctions, to supply chains, to barter systems.

2 www.ebay.com
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(which are multiple English auctions modified with a deadline, proxy bidding and dis-
crete bids) bidding until one’s valuation is no longer always the optimal strategy and in
Continuous Double Auctions (CDAs) (which are a symmetric auction mechanism with
multiple buyers and sellers) there is no known optimal strategy [7].

Given this background, there has been considerable research endeavour to develop
trading agents with heuristic strategies that are effective in particular marketplaces
[18,22]. Though more of a black art than an engineering endeavour at present, we
believe the design of successful strategies in such marketplaces can nevertheless be
viewed as adhering to a fundamental and systematic structure. To this end, in this pa-
per, we provide a general framework for designing strategies which is simple enough
to be applicable in a broad range of marketplaces, but modular enough to be used in
the design of complex strategic behaviour. We believe such a model is important for
the designers of trading agents because it provides a principled approach towards the
systematic engineering of such strategies which, in turn, can foster more reliable and
robust strategies.

As there is no systematic software engineering framework currently available for
designing strategies for trading agents, this paper advances the state of the art by pro-
viding the first steps towards such a model. Specifically, our framework is based upon
three main principles:

1. An agent requires information about itself and its environment in order to make
informed decisions.

2. An agent rarely has full information or sufficient computational resources to man-
age all the extracted information.

3. Given its limited computational resources and information, an agent needs to em-
ploy heuristics in order to formulate a successful strategy.

In order to operate in such situations, we advocate a multi-layered design frame-
work. We believe this is appropriate because most strategies can be viewed as breaking
down the task of bidding into a set of well defined sub-tasks (such as gathering rele-
vant information, processing that information and using that processed information in a
meaningful manner). This decomposition can be viewed as a series of (semi-) distinct
steps that are handled by different layers. Furthermore, our aim is to ensure our model
is sufficiently abstract to be used as the agent model in more general agent-oriented
software engineering frameworks, such as Gaia [23] and Agent UML [1]. To this end,
our framework is inspired by the distinction made in economics between information
and the knowledge derived thereof [6], and is augmented by the Behavioural Layer
(since the behaviour dictates which knowledge an agent seeks within an environment).
Specifically, our framework consists of three layers: the Information, Knowledge and
Behavioural layers (hence we term our framework the IKB model hereafter).

In more detail, the information layer records raw data from the market environment.
This is then processed by the knowledge layer in order to provide the intelligent data
which is used by the behavioural layer to condition the agent’s strategy. To illustrate
the use of our framework, we chose two example marketplaces that are popular for
trading agents. Firstly, we consider the marketplaces with one auction protocol, the
CDA, which is widely used in trading stocks. We place a number of the standard CDA
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strategies within it. Secondly, we consider a more complex scenario, the Travel Game
of the International Trading Agent Competition (TAC) where an agent has to strategise
in multiple simultaneous auctions of different formats. In both cases, we employed our
IKB model successfully.

The remainder of this paper is structured as follows. We review related work in the
field in Section 2. Section 3 outlines the IKB model, which is then applied to our trading
market examples in Sections 4 and 5. Section 6 concludes.

2 Related Work

Much work has been carried out on abstracting the design of electronic markets [13,16].
However, this work tends to emphasise the methodologies for designing the markets
themselves or on proposing new market infrastructures [2,19]. The systematic design
of strategies for agents operating in these markets has, in general, been considered to a
lesser extent. In this latter vein, however, Vetsikas et al. [20] proposed a methodology
for deciding the strategy of bidding agents participating in simultaneous auctions. Their
methodology decomposes the problem into sub-problems that are solved by partial
or intermediate strategies and then they advocate the use of rigorous experimentation
to evaluate those strategies to determine the best overall one across all the different
auctions. However, their methodology is very much tailored to simultaneous auctions
in general and the TAC in particular [22]. Thus, it cannot readily be generalised to other
auction formats or other market mechanisms. Furthermore, other approaches, including
[2,8], look at the strategic behaviour of agents. However, they avoid issues related to the
information and knowledge management aspects of designing trading agents (focusing
instead mainly on the strategic behaviour of the strategy).

3 The IKB Model

In this section, we detail the main components that the designer of a trading agent strat-
egy should pay attention to. In so doing, we develop a framework for designing strate-
gies in trading markets. In our model, we have a marketM regulated by its predefined
protocol. The collection of variables representing the dynamics of the system at time tk
(where k indexes changes in the market) is represented by the state variable pM(tk).
Within this market, there is a set of trading agents, I, that approach the market through
a set of actions which are determined by their strategies. In order to formulate its best
strategy, an agent ideally needs to know which state it is currently in (agent state), the
market state and the actions it can take.

Definition 1. Agent’s State. An agent i’s state, pi(tk), at time tk is a collection of
variables describing its resources (computational and economic) and privately known
preferences.

Definition 2. Market State. The market state, pM(tk), at time tk is a collection of
variables describing all the (public and private) attributes of the market.
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Definition 3. Strategy. A strategy, Si, for agent i ∈ I, defines a mapping from the
history of the agent state H(pi(tk−1)) and the market states H(pM(tk−1)), and cur-
rent agent state pi(tk) and the market state pM(tk) to a set of atomic actions SAi =
{ai

1, a
i
2, . . . , a

i
r, . . .}, ai

r ∈ Ai where Ai is the set of all possible actions for agent i at
time tk.

The actions chosen by strategy Si then affect the external environment such that it
causes a change in the market state. In fact, this strategy could interplay with strategies
selected by other agents, I \ i, as well as some external input(s), extn, (where n is the
number of external signals not caused by participatory agents) so as to lead the market
to the new state:

pM(tk+1) = T (pM(tk), H(pM(tk−1)), SA1, . . . , SAI , ext1, . . . , extn) (1)

where T (.) is the state transfer function. From Definition 3, it is clear that in order
for an agent to know which strategy is best, it should know the complete description
and history of the states (all market information), a complete description of all actions
available to it, its preferences over the states, a model of its opponents’ state, behaviour
and preferences, and the state transfer function.

In practice, however, an agent will typically not have all this information (for nu-
merous reasons, such as limited sensory capabilities, privacy of opponent’s information
and limited knowledge of relevant external signals). Furthermore, an agent’s limited
computational resources imply that it might not be able to keep a history of all past
interactions. Given this, there is a need for designing feasible strategies that use limited
computational and sensory resources. To this end, we advocate the following design
principle where an agent manages its limited capabilities through its Information Layer
(IL), its Knowledge Layer (KL) and its behavioural Layer (BL) (as shown in figure 1).

In more detail, the Market State (MS) contains public information (i.e. information
available to all agents in the market) and private/semi-private information (i.e. informa-
tion available to one/some agents). We now provide a description of each of the layers
that pertain to the agent:

– Information Layer. The IL contains data which the agent has extracted from the
MS and private information about its own state. This extraction is a filtering process
(which we represent as the Information Filter in figure 1) whose objectives are
defined by the KL (e.g. filtering out only transaction prices).

– Knowledge Layer. The KL represents the gathered knowledge that is aggregated
from the data in IL (e.g. bids submitted in the market). The BL queries the KL to
obtain the knowledge it requires.

– Behavioural Layer. The BL determines the agent’s strategic behaviour by deciding
on how to use the information available to it in order to interact with the market
through a set of actions (e.g. submitting a bid). It queries the KL for the relevant
knowledge it requires (e.g the belief that a bid will be accepted in the market).

We next describe each of these layers in further detail, whilst explaining the process
through which an agent uses a plethora of raw data to select appropriate actions.
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Fig. 1. Structure of the IKB Model

3.1 The Information Layer

This section deals with how an agent gathers information which is then passed on to the
KL. The KL will select the data being stored in the IL by modifying the information
filter (see figure 1) appropriately. This filter will screen the data from the MS with some
noise (due to environmental noise or the agent’s sensory limitations). As a result, the IL
of an agent will contain a noisy, restricted view of all information which it can observe.
Furthermore, the IL will also contain information about the agent’s state, pi(t), as well
as its action set Ai.

We distinguish between information and knowledge in the following way:

Definition 4. Information. Information is raw data that can be sensed by an agent.

Definition 5. Knowledge. Knowledge is the processed data that is computed by an
agent from the information it has gathered.

Now, information is typically categorised as follows [15]:

– Complete/Incomplete: An agent has complete information if it is aware of the com-
plete structure of the market (that is, its action sets and the result of each action).
Otherwise, it has incomplete information.

– Perfect/Imperfect: An agent has perfect information if it is certain of its state, the
history of the market’s and the agent’s states (H(pM(tk−1)) and H(pi(tk−1))) that
have led it into this state. Otherwise, it has imperfect information.
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As argued in Section 1, an agent’s sensory and computational limitations imply that
it will rarely have perfect and complete information. For example an agent might not
be aware of its complete action set (i.e. an agent might believe that its action set at
time tk is A′

i ⊂ Ai) or it may be unsure of which state it is in (i.e. it expresses an
uncertainty over pi(tk)). Thus, the agent will need to have certain heuristics in order to
guide its search for information. This information can be gathered from public, semi-
private and private sources. Public information is observable by all agents (i ∈ I) in the
market and includes things such as the market price in a stock exchange, the minimum
increment in an eBay auction and the number of lots of flowers on sale in a Dutch
flower auction. Semi-private information is that which is available to a subset of the
agents (i ∈ J ⊂ I) and includes things such as the amount that a supplier might
require from an agent and the code to signalling actions by a bidder ring in an auction
[14]. Private information is only observable by a single agent and includes items such
as its budget or the goods it is interested in. Thus, given the required information that
the KL has requested, the agent will devote its limited resources to obtaining it. Then
having gathered the required information from the market, the agent proceeds to use
this information to infer knowledge in the KL.

3.2 The Knowledge Layer

The Knowledge Layer connects the Information and the Behavioural layers (see Section
3.3). It infers knowledge from the information sensed by the agent and passes it to the
BL which acts upon it. In order to do so, the KL is requested by the BL as to which
knowledge to acquire. This knowledge could be, for example, the current Sharpe ratio3

of a stock or a forecast of market price based on a particular prediction model. Based
on this and the current knowledge of the agent’s state, the KL will decide upon the
information it requires and set the information filter accordingly. The KL will then use
the input from the IL to infer the appropriate knowledge which it will output to the BL.

Mirroring the IL, the KL can be segmented into knowledge about the agent’s and the
market’s state. The former is what the agent knows about itself. This includes knowl-
edge pertaining to its sub-goals (such as its risk attitude or the deadline by which a good
is to be delivered) and knowledge about its state pi(tk). The latter is what the agent
knows about the market and would include items such as the degree of competitiveness
in the market, the opponents’ state and any available market indicators.

3.3 The Behavioural Layer

The Behavioural Layer represents the decision-making component of the strategy. In
this context, such strategies are targeted towards finding the optimal action4 in the mar-
ket. However, as outlined earlier, more often than not, there is no known optimal action,
as the market is too complex and the set of actions too large to determine such an opti-
mal action analytically. Then, as there is no best strategy, a heuristic approach is taken.
Thus, the BL instructs the KL as to what knowledge it needs to gather from the market

3 The Sharpe ratio is a measure of a stock’s excess return relative to its total variability [17].
4 Here, “optimal” means the agent’s most profitable action, given the current market conditions.
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which, as described in Subsection 3.2, is computed from the market information. With
the relevant knowledge of the market and its goals, the agent i forms a decision based
on its strategy Si and interacts with the market through actions SAi. The goal of an
agent’s strategy is typically profit-maximisation, with the more sophisticated strategies
considering both short-term and long-term risk. The formulation of the strategy usually
depends on such goals and the market protocols.

Given this insight, we categorise the different behavioural properties of the strategy
into different levels. In more detail, we distinguish those strategies in terms of the type
of information (in Equation 1) that is used, i.e., whether they use a history of market
information or not, and, where they consider external information or not.

1. No History (ignores H(pM(tk−1)) from Equation 1). Such reactive strategies
make myopic decisions based only on current market conditions, pM(tk). The
myopic nature of these strategies imply a lower workload on the KL since they
require less information to sense and process. Reactive strategies usually exploit
the more complex bidding behaviour of competing strategies and thus require less
computational resources to strategise. One example of such a strategy is the eSnipe
strategy5 which is frequently used on Ebay to submit an offer to buy near the end
of the auction.

2. History (considers H(pM(tk−1) in Equation 1). We further subdivide those strate-
gies that use a history of market information as being predictive or not (i.e. whether
they predict {pM(tk+1), pM(tk+2), . . .} or not). The non-predictive strategies typ-
ically use H(pM(tk−1)) to estimate pM(tk).
(a) Non-predictive: The non-predictive strategy is typically belief-based and forms

a decision based on some belief of the current market conditions. The agent’s
belief is computed from the history of market information in the KL, and usu-
ally represents the belief that a particular action will benefit the agent in the
market (e.g. an offer to buy that is accepted). Given its belief over a set of
actions, the agent then determines the best action over the short or long term.

(b) Predictive: A strategy makes a prediction about the market state in order to
adapt to it. Now, because future market conditions (that the trading agent adapts
to) cannot be known a priori, the adaptive strategy typically makes some pre-
diction using the history of market information. The KL is required to keep
track of how the market (knowledge) is changing to predict the future mar-
ket, while the BL uses this knowledge about the market dynamics to improve
its response in the market. Being adaptive is particularly important in situa-
tions where the environment is subject to significant changes. By tracking such
changes and adapting its behaviour accordingly, the agent aims to remain com-
petitive in changing market conditions.

3. No External Information (ignores ext1, . . . , extn in Equation 1). In this case,
the strategy does not consider any signals external to the market (e.g. the falling
market price of a good affecting the client’s preferences for another type of good
in an auction). However, the agent can choose whether or not to use the (internal)
information (e.g. the e-Snipe strategy uses the internal market information, while
the ZI Strategy [10] in the CDA does not make use of any market information).

5 www.esnipe.com
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4. External Information (considers ext1, . . . , extn in ESquation 1). It is possible
that signals external to the market can influence the preferences of the participants,
such as an event independent of the market causing the clients’ preferences in the
market to change (e.g. unforeseen weather conditions affecting the production of
wheat and thus the market for wheat indirectly). Thus, external information can be
a valuable source of information that the agent can use to strategise in the market.

Having presented our IKB model for designing trading strategies, we now consider
a specific example of a market mechanism that has spawned a gamut of strategies, and
discuss how our model can be applied to it.

4 Applying IKB to the CDA

The CDA is a symmetric auction with multiple buyers and sellers and presently is one
of the most popular auction formats in marketplaces populated by autonomous software
agents. In CDAs, traders are allowed to submit offers to buy (bids) or to sell (asks) at
any time during the trading day. There is an outstanding bid (ask) which is the highest
bid (lowest ask) submitted in the market at any time during the auction. Furthermore,
the market clears continuously whenever a bid can be matched to an ask. Such CDAs
are widely used, indeed they are the principal financial institution for trading securities
and financial instruments (e.g. the NYSE and the NASDAQ both run variants of the
CDA). Because there is no known dominant strategy in the CDA, several researchers
have worked on competing alternatives [4,9,21], developing trading agents that have
been shown to be capable of outperforming humans in experimental settings [5]. We
now give a formalised definition of the single-unit, single-item CDA institution, whose
market state at time tk is pM(tk) =< g,B,S, price(tk), bid(tk), ask(tk) > where:

1. g is the good being auctioned off.
2. B = b1, . . . , bnb is the finite set of identifiers of bidders in the market, where nb is

the number of current bidders.
3. S = s1, . . . , sns is the finite set of identifiers of sellers in the market, where ns is

the number of current sellers.
4. price(tk) denotes the current market price of good g in the market. This corre-

sponds to the most recent transaction price.
5. bid(tk) denotes the outstanding bid at time tk.
6. ask(tk) denotes the outstanding ask at time tk.

The agent state at time tk, is pi(tk)=<idi, ni(tk), vi =(v1,i, . . . , vni(tk),i), budgeti(tk),
compi(tk) > where:

1. idi defines the identity of the agent as either a buyer or a seller agent.
2. ni(tk) defines the number of items an agent wishes to buy or sell.
3. vi = {v1,i, . . . , vni(tk),i} is the vector of limit prices 6 ordered from highest to

lowest in the case of a bidder and vice versa in the case of a seller.
4. budgeti(tk) is the budget available to agent i.

6 This is the highest value at which a buyer would buy or the lowest value a seller will accept.
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5. compi(tk) is the computational resources (memory and processing power) avail-
able currently to agent i.

The action set of the agent depends on its identity (idi). If it is a buyer, it hasAi =<
bidi, silent > where bidi ∈ Re+ and silent is no bid and an action that does not impact
on the market. Correspondingly, if it is a seller, its action set is Ai =< aski, silent >
where aski ∈ Re+. It should be noted that in the CDA, SAi will only be singletons
(i.e. an agent can only take a single action at a time). The state transfer function TCDA

is the rules for acceptance and rejection of bids and asks as well as the clearing rules
(see below). The standard CDA is not influenced by external signals (i.e. the transfer
function TCDA has no ext1, . . . , extn arguments7) and the market changes each time
an agent submits a bid or an ask and thus simultaneous bidding does not occur. Thus
pM(tk+1) = TCDA(pM(tk), H(pM(tk−1)), SAi) whereby T (.) is defined by the fol-
lowing rules:

– if SAi = bidi, then
• if bidi < bid(tk) then bidi is rejected and pM(tk+1) = pM(tk).
• if bid(t) < bidi < ask(tk) then bid(tk+1) = bidi and all other market vari-

ables remain unchanged.
• if ask(t) < bidi, then price(tk+1) = cr(ask(tk) + bidi) (where cr(.) is a

clearing rule stating the transaction price at which the clearing should occur)8,
bid(tk+1) = 0 and ask(tk+1) = maxask (where maxask is the maximum ask
an agent can submit in the CDA)

– if SAi = aski, it follows the same intuition as above.
– if SAi = silent ∀i ∈ I and tk+1 − tk > inactivitylimit or tk+1 = deadline,

then the auction ends. inactivitylimit is a pre-defined period of inactivity whereby
no bid or ask is submitted, and deadline, the preset time when the market closes.

Furthermore, an agent’s state will also change, conditional on whether its bid or ask
is accepted in the market. If an agent’s bid bidi results in a transaction, ni(tk+1) =
ni(tk) − 1, budgeti(tk+1) = budgetitk − price(tk+1) and vi = {v2,i, . . . , vni(tk),i}.
If an agent’s bid is unsuccessful, then the MS relays this private information to the
agent. The agent’s visibility is restricted to only bids and asks being submitted in the
market (with the agent that submitted a bid or an ask, not disclosed) and successful
transactions. This information is publicly available in the MS. Based on the information
that describes the market conditions, the agent strategises to submit a competitive offer
to buy or sell. Given this background, we now analyse a selection of the most popular
strategies for the CDA, from the perspective of the IKB model. We provide a summary
of the analysis in table 1.

– The Zero-Intelligence (ZI) Strategy [10]: The ZI has a random behaviour: it is
non-predictive and does not use the history of market information. It effectively
ignores the market state (MS) and considers only its limit price, vni(tk),i (its private
information state in the IL) when submitting a bid or an ask. The KL does not
compute any knowledge and simply forwards vni(tk),i from the IL to the BL.

7 Thus, a CDA strategy does not consider external information.
8 This varies according to the CDA; examples include the midway value or ask(tk).
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Table 1. Analysis of five CDA strategies under the IKB model

ZI ZIP Kaplan GD RB
Information Limit Limit price and Limit price and Limit price and Limit price and

Layer price transaction price and Outstanding history of bid/ask transaction price
Current bid/ask and bid/ask and transaction price and limit price
current profit margin

Knowledge None Competitive profit Measures for Belief that bid/ask Target price based
Layer margin, success heuristics will be accepted on estimate of CE

of trade price, risk factor
Behavioural Random History, No history, History, History,

Layer predictive non-predictive non-predictive predictive

– The Zero-Intelligence Plus (ZIP) Strategy [4]: This is a predictive strategy that
uses the history of market information to predict the future market condition and
adapt to it. It learns the profit margin of agent i to remain competitive given the
changing market conditions. The IL collects bid(tk), ask(tk) and price(tk) (as
instructed by the KL). The IL forwards this data, as well as the agent’s profit margin
(private information in its IL), to the KL. That knowledge is then used in the BL to
predict the future market and adapt its profit margin, µi, to it. The BL then submits
Ai =< bidi|aski, silent >, where bidi or aski = (1 + µ)vni(tk),i.

– The Kaplan Strategy [7]: This is a non-predictive strategy that makes a decision
based only on simple heuristics, and ignores the history of market information. The
IL collects the outstanding bid and ask (bid(tk) and ask(tk) respectively) from the
MS. Thereafter, using this information from the IL, the KL calculates the measures
that are used in the heuristic rules of Kaplan’s BL [7]. These rules determine what
action,Ai =< bidi|aski, silent >, the agent i submits in the market.

– The GD Strategy [9]: This is a non-predictive strategy that uses a history of market
information. The BL decides on an action, < bidi|aski, silent >, by solving a risk-
neutral utility maximisation problem involving a belief that a bid or an ask at a par-
ticular value will be successful in the market, and its limit price, vni(tk),i. Thus, the
BL instructs the KL that it requires such knowledge. The KL then defines the Infor-
mation Filter (see figure 1), so that relevant information, namely the history of bids,
asks and transaction prices (H(bid(tk−1)), H(ask(tk−1)) and H(price(tk−1)) re-
spectively) are filtered to the IL. That information, along with the agent’s limit price
is passed to the KL. The KL can then compute the belief and passes it, along with
the limit price, to the BL.

– The Risk-based (RB) Strategy [21]: This strategy is predictive and uses a history
of market information. Furthermore, the RB has a more complex behaviour than the
ZIP. The intrinsic parameter of the strategy, which is updated in response to chang-
ing market conditions, is the risk factor associated with the current good to buy or
sell. The IL is instructed (by the KL) to record bid(tk) and ask(tk) and a history of
transaction prices, H(price(tk−1)). The KL then uses H(price(tk−1)) to estimate
the competitive equilibrium price9 and then a target price (which the agent con-

9 The competitive equilibrium is a price at which transaction prices are expected to converge to
as given by the classical micro-economic theory [15].
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Fig. 2. Structure of the Dolphin strategy for the TAC Travel Game

siders as currently the most profitable offer price in the market). The target price
(which is the market knowledge from the KL) is then used along with the agent’s
limit price, vni(tk),i, obtained from the IL and relayed through the KL, in a set of
bidding rules in the BL. The latter then decides what offer, < bidi|aski, silent >,
the agent i submits.

Having discussed how the IKB model can be applied to existing strategies for the
CDA, we consider in the next section how we can use our framework to engineer a new
trading strategy given a market mechanism.

5 Design a Trading Strategy for the TAC Using the IKB

Here, we describe10 how we employ our IKB framework to design a novel strategy for
the TAC11. This competition involves a number of software agents competing against
each other in a number of interdependent auctions (based on different protocols) to
purchase travel packages over a period of 5 days (for the TACtown destination) for
different customers. In more detail, in a TAC Travel Game (each lasting 9 minutes),
there are 8 agents required to purchase packages for up to 8 customers (given their
preferences) and that compete in 3 types of auctions which we describe next.

1. Flight auctions. There is a single supplier for in-flight and out-flight tickets over
different days, with unlimited supply, and ticket prices updating every 10 seconds.
Transactions occur whenever the bid is equal to or greater than the current asking
price of the flight supplier.

10 We only provide a brief description of the formalisation due to lack of space.
11 Our IKB framework is employed in designing our agent, Dolphin which was ranked 4th in the

final of the TAC Travel Game 2005.
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2. Hotel auctions. There are two hotels at TACtown, namely Shoreline Shanties (SS)
and Tampa Towers (TT), with TT being the nicer hotel and each hotel having 16
rooms available over 4 different days. Thus, there are 8 different hotel auctions
(given the 2 hotels and rooms being available for 4 different days). Hotel rooms are
traded in 16th-price multi-unit English auctions, whereby the 16 highest bidders are
allocated a room for a particular day in a particular hotel, and at the end of every
minute except the last minute, a hotel auction randomly closes, and the 16th and
17th highest price of each hotel auction that is still open is published.

3. Entertainment auctions.There are three types of entertainment in TACtown, namely
a museum, an amusement park and a crocodile park, and 12 different entertain-
ment auctions. At the beginning of the game, each agent is randomly allocated 12
entertainment tickets tradeable in the different multi-unit CDAs which clear con-
tinuously and close at the end of the game.

Given this background on the TAC environment, our objective is to design a trading
strategy for an autonomous software agent participating in such a game. We develop
the strategy by using the IKB framework, adopting the multi-layered approach. We
now describe the strategy within the different layer prescribed by the IKB.

5.1 The Behavioural Layer

The issues associated with the bidding behaviour can be summarised as follows: (1)
What item to bid for? (2) How much to bid for? (3) When to bid?

Definition 6. Optimal Plan. The optimal plan is the set of travel packages, for 8 dif-
ferent clients, that would yield the maximum profit, given the clients’ preferences (that
determine the utility of the package) and the cost of the packages.

Definition 7. Marginal Profit12. The marginal profit of a hotel room (in a particular
hotel on a particular day) is the decrease in the agent’s total profit if it fails to acquire
that room. Thus, the marginal profit of a hotel room that is not required in the optimal
plan is 0. The marginal profit is defined only for the more competitive hotel auctions.

Our strategy uses the history of market information, H(pM(tk−1)) without any external
information. The publicly viewable market state pM(tk) is a subset of bids and asks in
all open auctions as well as the clearing price of all the closed auctions. Only the 16th
and the 17th highest bid are visible for hotel auctions, and the outstanding bid and ask
for the entertainment auctions.

We address the first issue by considering the optimal plan (see Definition 6). Thus,
the agent always bids for the set of items (flight tickets, hotel rooms and entertainment
tickets) required for the optimal plan, querying the optimal plan from the KL every 10
seconds. As a hotel auction closes every 60 seconds, the set of items available to the
agent is further constrained and the optimal plan has to be recalculated. We address the
other issues by considering the different auction formats.

First, we consider the 8 flight auctions. Given the manner in which the flight prices
update, it is possible to predict the trend of the price update. Such a trend is queried

12 The marginal profit described here is similar in essence to the marginal value used in [3].
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from the KL. If the trend suggests a decrease in price, the BL then queries the predicted
lowest ask price of the flight auction, and a bid is placed in that auction when that
minimum is reached, if such flight tickets are required in the optimal plan. Conversely, if
an increasing trend is predicted in a flight auction, we face a trade-off between acquiring
all the tickets in such an auction immediately at the current lowest price, and waiting in
case the agent does not manage to acquire the scarce hotel rooms required in the optimal
plan, which could make the flight tickets redundant (since they are no longer required in
the optimal plan and represent a loss). We implement the trade-off by spreading our bids
in a flight auction over the remaining length of the TAC game. For example, if 4 tickets
are required from a particular flight auction with an increasing trend, we could buy a
single ticket every minute over the next 4 minutes, rather that buying all 4 immediately.

Next, we have the 8 hotel auctions, with a random one clearing (and closing) every
minute. Thus, every minute, as the optimal plan changes, we update our bid in those
auctions that are yet to close. Now, there is uncertainty in being able to acquire all the
items required in the optimal plan, particularly at the beginning of the game. Further-
more the optimal plan typically changes during the game resulting in an item no longer
being required in the optimal plan as the game progresses. Thus, bidding too high ini-
tially does not pay off since such a bid could result in that item still being acquired.
Thus, our agent does not bid for a hotel room at its marginal profit (see Definition 7),
but rather bid low at the beginning of the game and gradually increases its bid for a
room towards its marginal profit as the game progresses, bidding its marginal cost after
the 7th minute before the last hotel auction closes.

Finally, we have the 12 entertainment auctions. Here, we use the RB strategy (see
Section 4) to bid in those CDAs. In particular, we have 12 RB traders that bid for the
items required in the optimal plan. The agent further instructs the RB trader to buy
cheap in auctions that do not influence the optimal plan, and sell high all the items
that it holds, if the agent can thus be more profitable rather than using such items in its
optimal plan. We now consider the knowledge required for the bidding behaviour.

5.2 The Knowledge Layer

Here, we principally require the optimal plan which is given as the solution to an op-
timisation problem. The agent searches for the plan that maximises its profit, which
is the total utility of the packages less their estimated cost. The utility of a package
is determined by a client’s preferences, which is queried from the IL. Furthermore, the
optimisation problem is constrained by different requirements of a feasible package, for
example a client needs to stay in the same hotel for the duration of his/her stay or the
client is required to stay in a hotel during the length of his/her stay [22], with additional
constraints imposed as hotel auctions close. We also consider the additional knowledge
of the predicted clearing price of the hotel auctions and of the flight auctions (based on
the trend of flight prices in those auctions) to estimate the cost of a plan.

Now, for the hotel auctions, we calculate the marginal profit of hotel rooms required
in the plan, to form the bidding price in the active hotel auctions. This is carried out
by considering the next best package if a particular hotel room in the optimal plan
cannot be acquired. The drop in profit then represents the marginal profit of that hotel
room. Next, for the flight auctions, the KL estimates the trend of the flight prices, by
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considering its history. Such knowledge is used in the BL to decide when to bid for flight
tickets, and in this layer, to calculate the minimum asking prices when a decreasing
trend is identified. Finally, for the entertainment auctions, the agent has the same KL as
the RB traders, described in Section 4.

5.3 The Information Layer

Having obtained the private information about its client preferences, the agent i then
extracts all market information it requires in order to build the knowledge used in its
strategy. Indeed, it tracks information relevant to the TAC Travel Game, such as the
running time of the game and which auctions have closed (which are described by
H(pM(tk−1))), as well as the clients’ preferences that do not change during the game
(which are described by H(pi(tk−1))). When it considers the individual auctions, the
agent has to record the history of published information (bids and asks where available).
In the flight auctions, the history of flight prices is required to estimate the trend, which
represents vital knowledge. In the hotel auctions, the history of the publicly announced
16th highest price can be recorded up to when the auction closes. Such information can
be used to estimate the clearing price of the hotel auctions in future TAC games. Finally,
for the entertainment auctions, the agent has the same IL as the RB traders.

6 Conclusions and Future Work

As electronic marketplaces are being used on a broader scale, we believe software
agents will increasingly dominate the trading landscape. Their ability to make informed
decisions, based on the plenitude of market information, to a degree that human traders
can never achieve, make them ideal candidates for traders. However, as this new breed
of agents are populating the markets, it is becoming a fundamental challenge to design
strategies that can efficiently harness the avalanche of information that is available into
efficient trading behaviour. Given this, the objective of this paper is to provide a sys-
tematic framework for designing such strategies. To this end, we proposed a framework
that can be broken down into three principal components; namely the behavioural layer,
the knowledge layer and the information layer. In so doing, we believe this work is an
important preliminary step towards guiding the strategy designer by identifying the key
models and concepts that are relevant to this task. We applied this model to analyse
a selection of strategies in the CDA mechanism and showed its use when designing a
novel strategy for the TAC Travel Game. Our approach allowed us to first decide upon
the general outline of the strategic behaviour of the TAC strategy, and then delve into
the complex task of implementing it. For the future, we obviously need to verify our
framework further by applying it to different types of market institutions.
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Abstract. The Sample Average Approximation (SAA) method is a technique for
approximating solutions to stochastic programs. Here, we attempt to scale up the
SAA method to harder problems than those previously studied. We argue that
to apply the SAA method effectively, there are three parameters to optimize: the
number of evaluations, the number of scenarios, and the number of candidate
solutions. We propose an experimental methodology for finding the optimal set-
tings of these parameters given fixed time and space constraints. We apply our
methodology to two large-scale stochastic optimization problems that arise in the
context of the annual Trading Agent Competition. Both problems are expressed
as integer linear programs and solved using CPLEX. Runtime increases linearly
with the number of scenarios in one of the problems, and exponentially in the
other. We find that, in the former problem, maximizing the number of scenar-
ios yields the best solution, while in the latter problem, it is necessary to evaluate
multiple candidate solutions to find the best solution, since increasing the number
of scenarios becomes expensive very quickly.

1 Introduction

Stochastic programming is a natural method for solving optimization problems under
uncertainty. This approach considers a problem in two stages. Decisions are made in
the first stage before pertinent information about the second stage is revealed, but the
objectives in the second stage are dependent on the first stage decisions. Given stochas-
tic information available about the second stage outcomes, the goal is to find the first
stage decisions that maximize the profits of the first stage plus the expected profits of
the second stage. A solution is sought that is optimal in this expected sense.

One computational bottleneck in solving problems formulated as stochastic pro-
grams is the calculation of the expected profits of the second stage. This calculation typ-
ically involves enumerating all possible second stage outcomes In many problems, there
are combinatorially many of these so-called scenarios, making it prohibitively expen-
sive to calculate expected profits. One common means of approximating the calculation
is the expected value method (e.g., [5]) in which the available stochastic information is
collapsed into a deterministic statistic (e.g., the mean), and a deterministic variant of the
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optimization problem is solved. But ignoring large portions of the available stochastic
information has been shown to be detrimental to solution quality (e.g., [6]).

Shapiro, et al. [1, 9] proposed an alternative approximation technique called sample
average approximation (SAA) to reduce the number of scenarios. They suggest using
only a subset of the scenarios, randomly sampled according to the distribution over
scenarios, to represent the full scenario space. An important theoretical justification for
this method is that as the number of scenarios sampled increases, the solution to the
approximate problem converges to an optimal solution in the expected sense. Indeed,
the convergence rate is exponentially fast.

In this paper, we attempt to scale up the SAA method to harder problems than
those previously studied (e.g., [1, 9]). We tackle two stochastic optimization problems
that arise naturally in the context of the annual Trading Agent Competition (TAC)
(see http://www.sics.se/tac). The first problem is a bidding problem inspired by the
TAC Travel game; the second problem is a scheduling problem inspired by the TAC
Supply Chain Management game. Nested inside each of these problems is an NP-hard
optimization problem.

We find that runtime increases linearly with the number of scenarios in the bidding
problem, whereas it increases exponentially in the scheduling problem. Indeed, given
reasonable time constraints we cannot reliably solve the scheduling problem with a
sample size of more than 8 out of 240 scenarios. We conclude that the theory which jus-
tifies the SAA method is inapplicable to some stochastic optimization problems. Con-
sequently, we experiment with optimizing the tradeoff between the number of scenarios
and the number of policies (i.e., candidate solutions). We generate multiple policies by
sampling from the set of scenarios multiple times, and solving the ensuing approxima-
tion problems. We evaluate these policies with respect to a large, yet fixed, sample of
scenarios. In the bidding problem, as the theory suggests, we find that maximizing the
number of scenarios yields the best solution; in the scheduling problem, however, it is
necessary to evaluate multiple policies to find the best solution, since increasing the
number of scenarios becomes expensive very quickly.

2 Sample Average Approximation

Following [9], we are interested in solving optimization problems of the form:

v∗ = max
x∈X

g(x) (1)

where
g(x) = EQ [G(x, Y )] (2)

Here, x ∈ X is a vector of decision variables that takes values in the finite set X ; Y is a
vector of discrete random variables with joint probability distribution Q over universe
Ω; G(x, ω) is a real-valued function of x ∈ X and ω ∈ Ω; and EQ [G(x, Y )] is the
expected value of G at x: i.e.,

EQ [G(x, Y )] =
∑
ω∈Ω

Q(ω)G(x, ω) (3)
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Each realization ω of Y , drawn according the distribution Q, is a scenario. Note
that the number of scenarios is exponential in the number of random variables. (For
example, if there are n random variables, all of which can take on binary values, there
are 2n scenarios.) Consequently, it is prohibitively expensive to compute EQ [G(x, Y )].
On the other hand, it is relatively less expensive to compute G(x, ω).1

The sample average approximation (SAA) method is a numerical means of approx-
imating a solution to Equation 1 via Monte Carlo simulation. The main idea is simple:
(i) generate a set of scenarios S of size S by sampling values of Y according to the
distribution Q, and (ii) approximate the expected value in Equation 3, based on only
the scenarios in S. More specifically, generate a set of scenarios S = {y1, . . . , yS}, and
solve the optimization problem:

v̂S = max
x∈X

ĝS(x) (4)

where for a set of scenariosN = {a1, . . . , aN} of size N ,

ĝN (x) =
1
N

N∑
i=1

G(x, ai) (5)

The SAA method, as it is applied in this paper, is shown in Algorithm 1. First, P can-
didate solutions, or policies, x̃1, . . . , x̃P , are generated, by solving Equation 4 for P dis-
tinct scenario sets S1, . . . ,SP , each of size S. Second, these candidate policies are eval-
uated by computing ĝE(x̃1), . . . , ĝE(x̃P ) for a fixed set of scenarios E = {z1, . . . , zE}
of size E. Third, the best candidate policy according to the evaluation phase is output.

Note the following:

– for all X ′ ⊆ X , v̂S = maxx∈X ĝS(x) ≥ maxx∈X ′ ĝS(x)
– for all x ∈ X , ĝN (x) is an unbiased estimator of g(x): i.e., E [ĝN (x)] = g(x)

It follows that the estimator v̂S is a statistical upper bound on v∗:

E [v̂S ] ≥ E

[
max
x∈X ∗

ĝS(x)
]
≥ max

x∈X ∗
E [ĝS(x)] = max

x∈X ∗
g(x) = v∗ (6)

where X ∗ ⊆ X denotes the set of optimal solutions to Equation 1. On the other hand,
for any feasible solution x̃ ∈ X , ĝE(x̃) is a statistical lower bound on v∗:

v∗ = max
x∈X

g(x) ≥ g(x̃) = E [ĝE(x̃)] (7)

The difference E [v̂S ]− E [ĝE(x̃)] is an estimator of the optimality gap.
Using the theory of large deviations, Kleywegt, et al. [9] establish the following re-

sult: as S → ∞, the probability that a solution to Equation 4 is an optimal solution
to Equation 1 converges to 1 exponentially fast. In their implementation of SAA, the
basic procedure is repeated P times, for increasing values of S (and E), until the es-
timate of the optimality gap is sufficiently small. However, as S → ∞, the time and

1 In fact, in our application domains, the exact computation of G(x, ω) is NP-hard.
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Algorithm 1. Sample Average Approximation (E, S, P )
1: bestval ⇐ −∞
2: sample a set E of E scenarios according to Q
3: for all j = 1 to P do
4: sample a set S of S scenarios according to Q
5: x̂ ⇐ arg maxx∈X ĝS(x)
6: calculate ĝE(x̂)
7: if ĝE(x̂) > bestval then
8: bestval ⇐ ĝE(x̂)
9: bestsol ⇐ x̂

10: end if
11: end for
12: return bestsol

space complexity required to solve Equation 4 may increase superlinearly, making it
impossible—for all practical purposes—to allow S to suitably increase, unless the de-
sired optimality gap is sufficiently large. Rather than fix the number of policies P , and
vary only S and E, we apply the SAA method by searching for optimal settings of E,
S, and P , given the time and space constraints of the problem.

2.1 Overview

In solving stochastic optimization problems, not only can increasing the number of sce-
narios S increase the quality of the solution, but increasing the number of policies P
can also increase the quality of the solution (the probability that the (P + 1)st policy
outperforms the first P policies is 1/(P +1)). Moreover, in Algorithm 1, the time com-
plexity is linear in P and the space complexity is constant in P , but increasing S could
increase time and space complexity in unpredictable ways because of the intricacies of
Equation 4. In this paper, we study two stochastic optimization problems in the TAC
domain, analyzing the tradeoff between solution quality and complexity, with respect
to E, S, and P .

3 Sample Problem Domains

In this paper, we study two sample problem domains—stochastic bidding and stochastic
scheduling—both inspired by the annual Trading Agent Competition (see
http://www.sics.se/tac, [11], [2]).

3.1 Stochastic Bidding Problem

We solve a stochastic bidding problem inspired by the classic Trading Agent Compe-
tition game. In this game, each agent’s objective is to maximize the profits earned by
delivering combinations of 28 types of goods, on offer in 28 auctions, to eight clients.
The stochastic formulation of the bidding problem can be described informally as fol-
lows: given a stochastic model of auction clearing prices, and given an agent’s clients’
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preferences, find an optimal set of bids (and asks). It is natural to formulate this problem
as a two-stage stochastic program: in the first stage an agent makes its bidding deci-
sions; in the second stage, when the agent is informed of its winnings, it allocates those
winnings to its clients. This second stage problem, TAC Travel allocation—find the
utility-maximizing set of packages that an agent can assemble from its winnings, given
its clients preferences—is equivalent to the (NP-hard) winner determination problem in
combinatorial auctions (see Appendix B.)

A TAC Travel Stochastic Pricing Model. The bidding problem takes as input a stochas-
tic model of clearing prices. Our stochastic pricing model is inspired by the expected
competitive equilibrium pricing model developed for Michigan’s TAC Travel Agent,
Walverine [7]. To compute the expected competitive equilibrium price of a good,
the tatonnement process is run once making use of the expected market wide demand,
which is calculated based on the expected values of the opposing agents’ clients’ pref-
erences. In a stochastic modeler, rather than run the tatonnement process only once
using expected market wide demand, the process is run multiple times, each time draw-
ing a random selection of the opposing agents’ clients’ preferences from the probabil-
ity distributions given in the game’s specification. We ran this procedure 2000 times
to generate 2000 scenarios, which comprise our model of stochasticity in our experi-
ments.

3.2 Stochastic Scheduling Problem

We solve a stochastic scheduling problem inspired by the Trading Agent Competition
in Supply Chain Management. The problem is to schedule production of computers at a
factory with limited capacity when demand for different types of computers is stochas-
tic. There are 16 computer types that can be produced. The computers are produced to
meet customer demand, which comes in the form of possible orders. A possible order
is specified by a probability, price, computer type, and quantity. The probability indi-
cates how likely it is that a possible order will become a real order. Real orders can be
satisfied by delivering the quantity of the computer type requested. Revenue is earned
by satisfying real orders. The objective is to distribute the available production capacity
among computer types in a way that maximizes expected revenue.

We express the problem as a two-stage stochastic program. In the first stage, the
agent makes its production decisions. In the second stage, the agent is told which
of the possible orders become real orders, and chooses the profit maximizing subset
of real orders to deliver using the computers produced in the first stage. The second
stage problem, which we call delivery scheduling, is a 0-1 knapsack problem (see Ap-
pendix C).

A problem instance is a set of 40 possible orders. The possible orders are generated
based on uniform distributions of probabilities, computer types, and quantities. A pos-
sible order’s price is inversely related to the probability of it becoming a real order. To
make the problem interesting, we generate a range of quantities such that the expected
demand is twice the production capacity.
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4 Experiments

The goal of our experiments was to optimize the parameters E, S, and P in Algorithm 1
in our two sample problems, given time (and space) constraints. At a high level, we ran
multiple trials (that is, we solved multiple instances of each problem), with multiple
settings of the parameters, and we averaged our results across trials to find the best pa-
rameter settings within reasonable time and space constraints. More specifically, our
tests were conducted as follows: for each setting of the parameters (E, S, P ), and for
each trial t = 1, . . . , T , we (i) generated a problem instance; (ii) ran Algorithm 1 to
find the best policy; (iii) evaluated that policy using E′ > E scenarios.2 For the bidding
problem we set T = 50 and E′ = 250, and we let E ∈ {1, 2, 4, 8, 16, 32, 64, 128} and
S, P ∈ {1, 2, 4, 8, 16, 32, 64}. For the scheduling problem, we set T = 100 and E′ =
5000, and we let E ∈ {10, 100, 500, 1000}, S ∈ {1, . . . , 8}, and P ∈ {1, . . . , 375}.
All experiments were run on an AMD Athlon 64 3000+ with 1GB of RAM. We used
CPLEX 9.0 to solve the integer programs, solving to within .01% of optimality with the
default settings.

4.1 Hypotheses

Our first set of experiments was intended to approximate the time complexity of the
bidding problem and the scheduling problem. The graphs in Figure 1 depict time (in
seconds) as a function of S, for fixed values of E and P . Perhaps surprisingly, in the
bidding problem, this relationship is approximately linear. In the scheduling problem,
however, time increases rapidly as the number of scenarios increases. The error bars in
these graphs plot one standard deviation from the mean. The variance in these experi-
ments is large, because we average results across multiple trials: i.e., problem instances
of varying degrees of difficulty.

Figure 2 depicts the agent’s reward in the bidding problem and its revenue in the
scheduling problem, as a function of S and P . Here, we observe that increasing the
number of scenarios from 1 to 64 in the bidding problem leads to an increase in reward
from roughly 3300 to roughly 4200, on average. In the scheduling problem, increasing
the number of policies, say from 1 to 20, leads to a substantial increase in revenue, but at
32 policies, revenue seems to stabilize. Of course, increasing the number of scenarios
also leads to an increase in revenue, but in practice this may not be feasible. Indeed,
revenue is still increasing between 7 and 8 scenarios, but we cannot solve this problem
reliably with as few as 9 scenarios.

Based on these observations, we postulate the following: In problems, like the bid-
ding problem, where time complexity is an approximately linear function of S, a near
optimal setting of the parameters can be obtained by setting S to the maximum value
possible within the time and space constraints of the application, and then perhaps in-
creasing P if time and space permit. On the other hand, in problems like the scheduling
problem, where time complexity is a superlinear function of S, it is necessary to search
the space of parameter settings, within the time and space constraints of the applica-

2 Anecdotally, we report that more evaluations were necessary to accurately estimate the value
of a policy, but fewer evaluations were sufficient to rank policies.



Scaling Up the Sample Average Approximation Method for Stochastic Optimization 193

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

scenarios

tim
e 

(s
ec

)

0 2 4 6 8 10
0

2

4

6

8

10

12

14

scenarios

tim
e 

(s
ec

)

Bidding Problem: Scheduling Problem:
P = 1, E = 32 P = 1, E = 100

Fig. 1. Time as a function of the number of scenarios

1 2 4 8 16 32 64
1500

2000

2500

3000

3500

4000

4500

scenarios

re
w

ar
d

1 2 4 8 16 32
1500

2000

2500

3000

3500

4000

4500

policies

re
w

ar
d

P = 1,E = 32 S = 1,E = 32
Bidding Problem

0 2 4 6 8 10
4

4.5

5

5.5

6

6.5
x 10

5

scenarios

re
ve

nu
e

0 2 4 6 8 10
4

4.5

5

5.5

6

6.5
x 10

5

scenarios

re
ve

nu
e

0 20 40 60 80
4

4.5

5

5.5

6
x 10

5

policies

re
ve

nu
e

P = 1,E = 100 S = 1,E = 100
Scheduling Problem

Fig. 2. Reward and revenue as a function of the number of scenarios and policies

tion, to find the best quality solution. Indeed, the next experiments provides evidence to
support these hypotheses.

4.2 Optimizing E, S, and P

We tested only 243 of the 392 possible settings of the bidding parameters, and 282 of
the 12000 possible settings of the scheduling parameters because of artificially-imposed
time constraints. In the bidding problem, we ran all combinations of the parameter
settings for which we predicted the running time would be less than 3 minutes (in TAC
Travel games, hotel bidding proceeds in 1 minute rounds); in the scheduling problem,
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we ran all combinations of the parameter settings for which we predicted the running
time would be less than 25 seconds (in TAC SCM games, each day lasts 15 seconds)
We made these predictions as follows. For all values of S, we recorded the average time
to solve Equation 4; call this α(S). For all values of E, we recorded the average time to
solve Equation 5; call this β(E). For each combination of E, S, and P , we predicted the
running time would be P (α(S) + β(E)). Note that because of these time constraints,
we never exhausted the space limitations of our machines.

The results of our search for optimal parameter settings are depicted in Table 1.
Each table was generated as follows. First, we sorted our data according to time. Then,
we traversed this sorted list. Whenever the value of the solution improved, we output
new parameter settings and the corresponding values. The first column in each table
lists time in seconds. For the bidding problem, the second column lists rewards; for
scheduling, the second and third columns list the statistical upper and lower bounds on
revenue (Equations 6 and 7). The revenue earned in the scheduling problem is precisely
the estimated lower bound. The last three columns list the settings of E, S, and P that
generated these values.

In the bidding problem, the best performing parameter settings are those with 64
scenarios and only 2 policies, increasing the number of evaluations as time permits.
It appears that the increase in solution quality obtained by increasing the number of
scenarios exceeded any increase that could have been obtained by increasing the number
of policies. Given that time increases only linearly with the number of scenarios in the
bidding problem, but that solution quality converges to the optimal exponentially fast,
this outcome is not surprising.

In the scheduling problem, the best performing parameter settings are those with 4–6
scenarios and multiple policies. When the number of scenarios was 7 or 8, the policy
generation process was much slower than it was when there were fewer scenarios. In-
deed, only one “algorithm” with 7 scenarios appears in the table, and no “algorithms”
with 8 scenarios appear at all. We conclude that in the scheduling problem, choosing
the best among multiple policies yields better solutions than increasing the number of
scenarios to a point at which only a few policies can be evaluated.

5 Related Work

The sample average approximation method has been applied to a variety of stochas-
tic optimization problems of varying degrees of difficulty. It appears to us, however,
that none were quite so hard as the problems attacked here. For example, [9] exper-
iment with the stochastic knapsack problem, with only 20 first stage binary decision
variables, and [1] experiment with a stochastic optimization problem with 2 continuous
first stage variables and 4 integer second stage variables. In our formulation of the bid-
ding problem, there are 70400 first stage variables and 201216 second stage variables;
in our formulation of the scheduling problem, there are 16 first stage integer variables
and 320 second stage binary variables. Moreover, nested inside each of our problems
are NP-hard second stage decision problems.

To our knowledge, Algorithm 1 is the best-known method for solving stochastic opti-
mization problems. Thus, rather than compare sample average approximation with other
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Table 1. Optimal settings of the parameters as a function of time

Time Reward E S P
1.47 3318 64 1 1
1.48 3456 128 1 1
1.48 3502 2 1 1
1.49 3548 16 1 1
2.45 3550 32 4 1
2.45 3577 2 4 1
3.38 3695 2 1 2
3.89 3705 4 1 2
4.12 3912 128 8 1
4.16 3947 32 8 1
8.43 3967 2 16 1
10.55 4014 8 8 2
16.75 4043 32 8 2
17.95 4045 64 32 1
18.09 4064 1 32 1
18.12 4065 32 32 1
33.50 4077 32 8 4
38.52 4099 16 32 2
41.26 4132 32 64 1
82.20 4134 1 64 2
84.81 4136 32 32 4
85.99 4141 16 64 2
88.81 4142 32 64 2
115.27 4146 128 64 2

Time Lower Upper E S P
0.03 468310 754507 10 1 1
0.04 517559 688963 10 2 1
0.07 535059 657833 10 3 1
0.11 548218 647722 10 4 1
0.29 550930 639010 10 5 1
0.38 554046 637546 100 5 1
0.40 559796 630666 10 6 1
0.56 561418 628053 100 6 1
1.31 562798 624235 100 7 1
1.36 567807 661136 100 3 8
1.58 575676 647877 100 4 7
2.84 577965 646174 100 4 13
3.06 579369 638006 100 5 9
4.13 581433 636296 100 5 13
5.47 582306 629457 100 6 9
5.65 582504 635982 100 5 17
7.30 583621 637376 100 5 21
8.50 583998 630956 100 6 13
9.44 584043 646170 100 4 43
10.00 584287 636188 100 5 29
10.92 585094 645841 100 4 49
12.63 585543 636626 100 5 37

Bidding Problem Scheduling Problem

techniques, we conducted an in-depth study of the SAA method itself, with one excep-
tion. We did measure the performance of the expected value method in the scheduling
problem, where all random variables are replaced with their means. Much like the re-
sults reported in [4], this method performs far worse than the SAA method, even with
only one scenario and one policy. The revenue earned was only 311,064 (as compared
to 468,310). 3

6 Conclusion

In this paper, we conducted an empirical study of the sample average approximation
method for solving stochastic optimization problems. We discovered that runtime can
increase exponentially with the number of scenarios, so that even if solution quality in-
creases exponentially with the number of scenarios, it may be advantageous to conduct
a policy search, because runtime increases only linearly with the number of policies. In
particular, we applied what we call the ESP methodology, which is a means of searching

3 The poor performance of the expected value method is partly due to the structure of the par-
ticular problem instances we solved. The expected value method should perform better on
problem instances with higher ratios of the number of orders to the number of computer types.
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for optimal settings of the parameters of the SAA algorithm, given the time and space
constraints of an application. Based on our observations, we formulated a quick test to
determine whether maximizing S and then P , given the constraints of an application is
sufficient—namely, do time and space usage grow only linearly with S? Often, how-
ever, we expect time and space usage to grow exponentially with S, in which case it is
necessary to search the space of parameter settings to optimize the tradeoffs between
increasing S or P . The stochastic bidding and scheduling problems studied in this pa-
per were inspired by the Trading Agent Competition. In both TAC Travel and TAC
SCM, our agent’s architecture [3, 8] is comprised of two main modules: a “modeler”
and a “decider.” Our modelers build stochastic models of their environments, which
necessitates that our deciders solve stochastic optimization problems. In other words,
decision-making under uncertainty, particularly the two problems defined and analyzed
in this paper, is fundamental to our agents’ designs. Generalizing from our experience
in TAC Travel and TAC SCM, we expect that related stochastic optimization problems
are fundamental to the design of trading agents for domains outside the scope of the
Trading Agent Competition.

A Stochastic Programming Formulations

A.1 TAC Travel Bidding Problem

Index Sets a ∈ A indexes the set of auctions. c ∈ C indexes the set of clients. p ∈ P
indexes the set of bid prices. q ∈ Qa indexes the set of goods in auction a. s ∈ S
indexes the set of scenarios. t ∈ T indexes the set of packages.

Constants Gat is an integer constant indicating how many goods from auction a are
contained in a package t. Baqs is an integer constant indicating the closing buy price
of the qth good of auction a in scenario s. Zaqs is an integer constant indicating the
closing sell price of the qth good of auction a in scenario s. Uct is an integer constant
indicating the utility gained for client c having package t.

Decision Variables B = {βapq} is a set of boolean variables indicating whether to
bid price p for the qth good in auction a. Z = {ζapq} is a set of boolean variables
indicating whether to ask price p for the qth good in auction a. Γ = {γcst} is a set of
boolean variables indicating whether client c gets package t in scenario s.

Objective Function

max
B,Z,Γ

∑
S

Pr(s)

⎛⎜⎜⎜⎜⎜⎝
utility︷ ︸︸ ︷⎛⎝∑

C,T

Uctγcst

⎞⎠−
cost︷ ︸︸ ︷⎛⎝ ∑

A,Qa,p>Baqs

Baqsβaqp

⎞⎠+



Scaling Up the Sample Average Approximation Method for Stochastic Optimization 197

revenue︷ ︸︸ ︷⎛⎝ ∑
A,Qa,p<Zaqs

Zaqsζaqp

⎞⎠
⎞⎟⎟⎟⎟⎠ (8)

The objective function (Equation 8) maximizes utility minus cost plus revenue.

Constraints ∑
T

γcst ≤ 1 ∀c ∈ C, s ∈ S (9)∑
P

Bapq ≤ 1 ∀a ∈ A, q ∈ Qa (10)∑
P

Zapq ≤ 1 ∀a ∈ A, q ∈ Qa (11)

∑
C,T

γcstGat ≤
⎛⎝ ∑

Qa,p>Baqs

βapq

⎞⎠−
⎛⎝ ∑

Qa,p<Zaqs

ζaqs

⎞⎠
∀a ∈ A, s ∈ S (12)

Equation 9 limits each client to one package in each scenario. Equation 10 prevents the
agent from placing more than one bid for the same (auction, quantity) pair. Equation
11 prevents the agent from placing more than one ask for the same (auction, quantity)
pair. Equation 12 prevents the agent from allocating goods that it does not own (number
allocated ≤ number bought− number sold).

A.2 TAC SCM Production Scheduling Problem

Index Sets i ∈ I indexes the set of RFQs. j ∈ J indexes the set of SKUs. n ∈ N
indexes the set of scenarios.

Constants C is the production capacity. SKU si, quantity qi, price pi, and penalty ρi.
cj is the number of cycles required to produce SKU j. ωin is set to 1 if RFQ i becomes
an order in scenario n.

Decision Variables vj is an integer variable indicating the amount of SKU j to pro-
duce. zin is a boolean variable with value 1 if we fill order i in scenario n.

Objective Function
max

z

∑
n

∑
i

(pi + ρi)zin (13)

The objective function (Equation 13) maximizes the revenue of allocating assembled
computers to orders across scenarios. Note that the true value is obtained by subtract-
ing the quantity

∑
i ρi from the given value; but changing the objective function by a

constant does not affect the solution.
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Constraints Stage 1: ∑
j

cjvj ≤ C (14)

vj ∈ Z+, ∀j
Stage 2:

zin ≤ ωin ∀i, n (15)∑
{i | si=j}

qizin ≤ vj , ∀j, n (16)

zin ∈ {0, 1}, ∀i, n
Constraint 14 makes sure that we do not produce beyond our production capacity. Con-
straint 15 does not let us satisfy an RFQ for which we did not place a winning bid.
Constraint 16 makes sure that we do not allocate to orders more computers than we
assembled in the first stage.

B TAC Travel Allocation is NP-Hard

Generally speaking, allocation is equivalent to the winner determination (WD) problem
in combinatorial auctions, an NP-hard problem [10]. The role of the agent is analogous
to that of an auctioneer. In WD, an auctioneer is given a set of combinatorial bids in the
form of package–price pairs, and seeks an allocation of goods to bids so as to maximize
his profits, subject to the constraint that he cannot allocate more goods than he owns.
Analogously, in allocation, the agent is given a set of “bids” in the form of package–
utility pairs, and seeks an allocation of goods to packages so as to maximize the sum of
the corresponding utilities, subject to the constraint that it cannot allocate more goods
than it owns.

In TAC Travel, agents are subject to the further constraint that only one package
can be allocated to each client. TAC Travel allocation and (general) allocation are
polynomial-time reducible to one another. An arbitrary instance of TAC Travel alloca-
tion reduces to an instance of allocation by adding to every bid from client c a dummy
good c of which the agent owns exactly one, so that every feasible allocation assigns at
most one package per client. An arbitrary instance of allocation reduces to TAC Travel
allocation by associating a unique client with each bid.

C Delivery Scheduling is NP-Hard

The NP-hardness of the Delivery Scheduling Problem (DSP) [3] follows from the fact
that DSP is equivalent to 16 parallel 0-1 knapsack problems, one per SKU. In the knap-
sack problem, a set of items of varying weights and values is given, along with a knap-
sack of a fixed capacity (i.e., a weight limit). An optimal solution is a subset of the items
that maximizes the total value, with a total weight that does not exceed the knapsack’s
capacity. Equivalently, in DSP with only one SKU, a set of orders of varying quantities
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and prices is given, along with a fixed inventory. An optimal solution to DSP is a subset
of the orders that maximizes the total profit for which the total quantity does not exceed
inventory.
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Abstract. Market theory is often concerned only with centralised markets. In
this paper, we consider a market that is distributed over a network, allowing us to
characterise spatially (or temporally) segregated markets. The effect of this mod-
ification on the behaviour of a market populated by simple trading agents was
examined. It was demonstrated that an agent’s ability to identify the optimum
market price is positively correlated with its network connectivity. A better con-
nected agent receives more information and, as a result, is better able to judge the
market state. The ZIP trading agent algorithm is modified in light of this result.
Simulations reveal that trading agents which take account of the quality of the
information that they receive are better able to identify the optimum price within
a market.

1 Introduction

The study of the centralised market has been one of the key areas of economic research
for many years. There have been many attempts to understand the behaviour of markets
and that of the traders within them. These attempts range from analytical studies (e.g.,
[1]), to experiments on real subjects (e.g., the studies of Smith [2]).

In addition to analytical and experimental results, the use of simulation has become
increasingly important [3,4,5,6,7]. In particular simulation has allowed the modelling
of trader micro-behaviour, which would be analytically intractable and experimentally
time consuming. In virtually all of these micro studies, the market is assumed to occupy
a single location. All bids and offers are submitted in the same place, where all others
may see and respond to them. Not all markets, however, are like this. Retail markets, for
instance, are spatially embedded and consequently impose costs in terms of the time and
effort that it takes to visit other traders and acquire information. As a consequence of
this, it is usually impossible for a trader to visit all possible partners. Instead, the trader
will probably restrict information gathering to nearest neighbours, or key operators in
the market. In this case the market no longer has a central location to which information
is submitted and, as a result, different traders within the market may have access to
different histories of bids and offers.

H. La Poutré, N. Sadeh, and S. Janson (Eds.): AMEC and TADA 2005, LNAI 3937, pp. 200–211, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Who to Listen to: Exploiting Information Quality in a ZIP-Agent Market 201

It is not only spatially embedded markets which may limit the ubiquity of market
information. Traders in a financial market have ready access to all trading information.
However, in this case the shear quantity of information may segregate the market. The
traders incur very little cost in gathering information, instead the main cost is that of
analysis. Analysing information takes time, meaning that it may be impossible for a sin-
gle trader to study and accurately respond to all of the information within the market.
Traders are therefore likely to ignore some of the information available and fail to take it
into account when making decisions. In effect the trader will not be hearing some of the
information even though it is available in principle. One possible consequence of this
is to focus the attention of traders on a small subset of market products, leading to spe-
cialisation. There is, however, an important difference between these cases. Although a
market may be segregated in terms of information flow, trade is not as restricted as it is
in the spatially extended case.

In either of these cases, however, assumptions about centralisation of market pro-
cesses no longer hold. Different traders within the market have access to different his-
tories of bids and shouts and, potentially, a propensity to deal with particular partners
rather than others. These problems aren’t necessarily limited to human traders. It is pos-
sible to conceive of markets that are sufficiently large and complex that even computer
programs would find it inefficient to analyse all information present, or consider trad-
ing with every agent in the market. Recently models have started to appear that examine
these types of problems. For instance [8] and [9] have both examined trading scenarios
that take place across networks.

This paper aims to investigate the valuation of information within distributed markets.
As has previously been described, traders in these markets will have access to different
information sources and therefore different pictures of the market state. This will be
particularly apparent if some traders are more connected than others, i.e., they have more
information sources and trading partners. These better connected traders are, on average,
likely to have a better understanding of the market than those traders who are less well
connected. This paper will first examine the advantage this inequality provides to the
better connected traders along with the effect this has on trading within the market.

The effect of this imbalance is important because to some extent the degree to which
a trader is connected can be altered by the trader itself. It is well known that resources
must be expended to gather information and that properly analysing information takes
time. In many situations it is possible for a trader to change the proportion of its re-
sources dedicated to gathering and analysing information, however, it is important to
know under which circumstances to do this. This paper will begin to investigate this
question. It will consider a market where both trade and information flow are restricted
in a manner represented by an explicit, fixed network of possible agent-agent interac-
tions. The network will govern which agents are able to communicate with each other
and, therefore, which agents are able to trade with each other. Importantly, this network
will not be complete (fully connected), i.e., some traders within the market will not
be able to communicate directly with others. In this initial work we wish to gain an
understanding of the value of information in a simple segmented market so the mar-
ket network is fixed. Trader are not permitted to change their connections during the
simulation. In future we hope to develop this system so as to better understand the cir-
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cumstances in which it is favourable to change connectivity. The market used for these
simulations is very simple, it is not designed to reflex the intricacies of any particular
distributed market in particular. Instead it is designed to provide general insight into
the valuation of information in segmented markets. The results found within this paper
could be applied to any markets where information cannot flow freely. This includes
retail markets, OTC markets, and many others.

This model will differ from previous work in that it will model the micro-behaviour
of the traders. In both of the previous studies mentioned above [8,9], trade between
agents was abstract. When two agents were chosen to trade, their utility functions were
examined and an allocation of resources was calculated such that the utilities of both
agents were increased. In this study, we will use a well-established trading agent al-
gorithm to investigate the effect of the market constraints on the ability of agents to
identify the optimum price. In addition, an attempt will be made to modify the trading
agent algorithm to better cope with, or exploit, this situation.

2 Method

This section will first describe the structure and function of the markets that will be
investigated, before detailing the trading agents that will populate them.

2.1 Network Generation

Trading networks were constructed in which nodes represented traders and edges repre-
sented bi-directional communication channels. There are many possible network con-
figurations which could be investigated for their effect on market performance, includ-
ing lattices, Erdős-Rényi random graphs, small worlds, and graphs resulting from pref-
erential attachment. This paper will focus on the latter class of networks since they
exhibit some interesting properties, including the presence of well-connected “hubs”,
which have an intuitive appeal in terms of real world markets, where it would be ex-
pected that certain major investment banks would be much better connected than indi-
vidual investors.

An existing preferential attachment scheme is employed here [10]. A network of N
unconnected nodes is gradually populated with Nm edges. In random order, each node
is consulted, and allocated an edge linking it to a second node chosen according to prob-
abilities calculated as pi = (ni+δ)P . Here, P is the exponent of preferential attachment
and remains constant, n is node’s current degree (number of edges), and δ is a small con-
stant (0.1 for all results reported here) that ensures unconnected nodes have a non-zero
probability of gaining a neighbour. Self-connections and multiple connections between
the same pair of nodes were not allowed. All probabilities, pi, were updated after ev-
ery edge was added. After m cycles through the population, the network was complete.
Note that every node will have a minimum of m edges, and a maximum of N − 1.

Markets explored here have a relatively high preferential exponent of P = 1.5 in
order to generate networks that display a wide range of degrees. For all results reported
here, m = 10. Initial tests showed that if m was significantly less than this value, the
market failed to converge as few agents were able to trade with their limited number of
neighbours.
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2.2 Auction Dynamics

The market functioned according to an adapted continuous double auction mechanism.
The standard continuous double auction allows buyers and sellers to submit bids to the
rest of the market for consideration at any time. First, in order to simplify the implemen-
tation of a continuous double auction on a network, we adopted the system presented
by Cliff and Bruten [4]. In their simulations, the auction mechanism acts in discrete
time and has no order book. Each time period, one active agent (one who is still able to
trade) is selected at random to make an offer or a bid. The other agents in the market
are then polled in random order for responses to the shout. If the response and the shout
cross then a trade is executed at the first shouted price, if not the next agent is polled.
If no trader accepts the shout then the shout is removed. Second, we limit an agent’s
ability to trade such that they are only able to make offers to, or accept bids from, their
network neighbours. Each market was simulated for a fixed number of time steps.

2.3 Trading Agents

Here, the ZIP trading algorithm is used to govern agent behaviour. ZIP, or Zero Intel-
ligence Plus, agents were created by Cliff and Bruten [4] in response to work by Gode
and Sunder [3], who created the “Zero Intelligence” trading algorithm in some of the
first agent-based market simulations. The Zero Intelligence algorithm was designed to
be the simplest possible algorithm that would allow trade to occur in a market. Two
types of Zero Intelligence trader were introduced. The first, unconstrained traders (ZI-
U), choose shout prices at random from a uniform distribution across the whole range
of possible prices permitted, disregarding any limit prices. It was found that markets
populated by these traders exhibited none of the normal properties associated with mar-
kets, such as convergence to the equilibrium price. The second type of zero intelligence
traders (ZI-C) were constrained in the range of prices that could be shouted. Shout
prices were again drawn at random from a uniform distribution. However, this distri-
bution was now constrained by an agent’s limit price. In the case of sellers, shouts
were constrained to be greater than the limit price, while in the case of buyers, shouts
had to be less than the specified limit price. Importantly, markets populated by traders
using this algorithm were shown to behave analogously to real markets in that they
converged to the theoretical equilibrium price [3]. This was interpreted as indicating
that the market mechanism itself was the most significant factor in market behaviour,
and that the design of the trading algorithm was not as important. Cliff and Bruten [4],
however, showed this to be incorrect, demonstrating that the convergence observed dur-
ing each trading period was an artifact of the supply and demand schedules used by
Gode and Sunder. They demonstrated that, for a certain type of supply and demand
schedule that was close to symmetric, the probability distribution of likely ZI-C bids
and offers would result in convergence to the mean price. They then performed sim-
ulations to verify these results with a broader range of supply and demand schedules.
For non-symmetric schedules, markets populated by ZI-C traders failed to converge, or
converged to a non-market-equilibrium value.

The ZIP agent differs from the ZI-C agent in that it learns from the market. Each ZIP
trader has a profit margin associated with its limit price. In the case of buyers, the profit
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margin is the amount by which they wish to undercut their limit price to make a trade,
and in the case of sellers, it is the amount by which they wish to exceed there limit
price. When a ZIP trader shouts, the price is constrained by its limit price and profit
margin. The agent uses the market’s response to its activity (and the observable activity
of others) to update its profit margin. For instance, buyers observe the bids made on the
market and whether they are accepted or not and adjust their profit margin accordingly
(for full details of this algorithm, see [4]). The ZIP algorithm employs the Widrow-
Hoff learning rule with momentum [11] to adapt these profit margins throughout each
agent’s lifetime—maximising for each agent the possibility of making a profitable trade.
This learning rule allows the agents to rapidly converge on the optimal price, while the
momentum term allows blips in the market to be ignored. Unlike ZI-C, ZIP agents are
capable of finding the market equilibrium under a wide range of supply and demand
schedules.

Here, each ZIP agent was initialised with a random profit margin drawn from a uni-
form distribution [0.05, 0.35]. Each agent was also initialised with a random learning
rate drawn from a uniform distribution [0.1, 0.5] and random momentum value drawn
from a uniform distribution [0.2, 0.8].

3 Initial Results

Experiments were performed using markets populated by 100 ZIP traders. Each agent
was randomly allocated a limit price in the range [100, 200], and either the ability to
buy one unit or sell one unit of an unnamed indivisible commodity. Each market sim-
ulation lasted for 400 time steps. Markets were constrained by networks, constructed
as described above, with P = 1.5 and m = 10, and all markets operated through the
continuous double auction mechanism.

Figure 1(left) shows the price deviation from the theoretical optimum averaged over
forty thousand repetitions. Each agent’s valuation was obtained at each time step of
each repetition, and the average calculated. Notice that timeseries are shown for agents
with connectivity rank ranging from 1st (most well-connected) to 100th (least well-
connected). Over time, the average price shouted by all agents, regardless of connec-
tivity, approaches the equilibrium price. This is to be expected, as it is a fundamental
property of markets that they tend to converge to equilibrium. The agents do not all
converge at the same rate, however. Those agents who have most connections converge
fastest. Agents who are more connected receive more frequent information and so have
a better impression of the state of the market. They are, therefore, better able to accu-
rately judge the equilibrium price.

Agents converge on a market price that deviates from the equilibrium price. This is
due to the allocation of supply and demand. As the market converges, it will become in-
creasingly difficult for agents who have been allocated limit prices beyond the market’s
theoretical equilibrium price to find partners prepared to trade with them. Since agents
cannot alter their limit price, and are not prepared to trade at a value below it, some
will effectively price themselves out of the market. Indeed, some agents will be unable
to trade despite the presence of willing partners in the market as a whole, because they
will not have a neighbour prepared to trade with them.
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Fig. 1. Absolute deviation from optimum price averaged over 40000 runs for agents ranked in
decreasing order of connectivity for (left) standard ZIP agents, and (right) ZIP agents with a
learning rule adapted to exploit market topology information

3.1 Extension

As described, traders in the market assume that all of the information that they hear is of
equal quality, regardless of its source, i.e., the ZIP learning rule makes no distinction be-
tween the information it receives from different individuals. It has been demonstrated,
however, that there is a relationship between agent connectivity and accuracy of valua-
tion. How, therefore, could the traders take advantage of this fact?

In reality, it is known that some sources of information are of better quality than
others. This may be for a number of reasons, including market experience, quality of
information sources, reputation, or size. For reasons such as these, people are more
likely to trust information about financial markets obtained from a market trader than
information from a pub landlord. Alternatively they are more likely to trust the manager
of a large importer than a market trader for information about the fruit market.

In order to incorporate this factor into the model, the traders were modified to weight
the quality of information received. Information judged to be of high quality was
weighted strongly when adapting profit margins. There are many (possibly sophisti-
cated) ways to evaluate the quality of information received by an agent, especially as
each agent has multiple sources of information each of which may have sent messages
several times in the past. It could be possible to construct an algorithm that determined
a profit margin by comparing the most recent bid received to all previous bids received
from that and other traders, and the relative information quality of those bids. The com-
plexity of such an algorithm, however, would seem to be inappropriate for a model of
this simplicity at this stage. Here, a very simple method for evaluating the quality of
information was implemented, based on the results presented above.

ZIP agents adapt their price using the Widrow-Hoff rule every time they hear a shout
from another trader in the market. This rule includes a learning rate which influences
how quickly an agent is able to learn. Currently a fixed learning rate is assigned to each
individual in the simulation from a uniform distribution [0.1, 0.5].

In order for the agents to take account of information quality, the learning rate was
modified so that instead of being fixed, the value would be calculated for each piece
of information received. This alteration results in ZIP agents placing more weight on
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information obtained from well-connected individuals than from less well-connected
individuals.

The Widrow-Hoff “delta” learning rule was modified by removing the learning rate
and replacing it with the function f(s, r), where s and r are the sender and recipient of
a piece of information (a shout).

f(s, r) =

⎧⎪⎪⎨⎪⎪⎩
0.3 +

0.2 log E(s)
E(r)

log(Rmax) : E(s) ≥ E(r)

0.3− 0.2 log E(r)
E(s)

log(Rmax) : E(s) < E(r)

The function, E, gives the number of neighbours (degree) of an agent, and Rmax is
the largest ratio of edges between two adjacent agents within the market. This adaptive
learning rate weights information according to relative connectivity within the market,
i.e., the ratio of the sender’s connectivity to the recipient’s connectivity determines the
learning rate. When the sender is more highly connected than the receiver the informa-
tion received is more likely to be accurate and so more adaptation occurs. When the
receiver is more connected, the receiver’s current picture of the market state is likely
to be more accurate than the senders and so less adaptation occurs. The value is nor-
malised by the maximum ratio present in the market in order to ensure that the learning
rate remains within the same bounds as standard ZIP traders. Connectivity ratios are
log-scaled to ensure that learning rate adaptation is sensitive to the small differences
in connectivity that characterise most sender-recipient pairs in a network generated by
a preferential attachment process (where there will be only a few very well-connected
individuals).

4 Results

Figure 1(right) shows the results obtained with the modified learning rule. All other
parameters are the same as the previous scenario. As before the deviation of the val-
uations decreases over time. Again the most connected agents converge more quickly
than the least connected agents. Figure 2(left) affords an easier comparison between
the two studies. The least well-connected agents converge more quickly when using the
modified learning rule than when using a fixed learning rate. At all times they have a
lower deviation from the optimum price than agents using a fixed learning rate. By the
end of the market they are significantly closer to the optimum price than those using
fixed learning rates (t-test, p < 0.0001). Over longer experiments they may, however,
eventually converge to the same value. The convergence of the better-connected agents
is very similar, with or without the presence of the modified learning rule, although
convergence is slightly retarded in the former case. By the end of the market, however,
both groups have attained very similar values. It must be remembered that, as a con-
sequence of the preferential attachment scheme that generates the market network, the
distribution of agent connectivities exhibits a power law. Poorly-connected individuals
vastly outnumber well-connected agents. As a result, even if the adaptive learning rate
does significantly retard the convergence of well-connected agents, only a very small
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Fig. 2. Absolute deviation from optimum price averaged over 40000 runs for (left) the most and
least connected agent in each experimental condition, and (right) for the single monitored agents
in markets designed to control for learning rate

number of traders will suffer (although these agents may in some sense be of above
average “importance”).

Before discussing these results further, a slight bias introduced by the adaptive learn-
ing rate scheme must be dealt with. Although the adaptive learning rate is constrained
to lie within the same bounds that constrain regular ZIP agents, the average learning
rate employed by the adaptive ZIP agents is higher than that of standard ZIP traders.
Recall that there are a greater number of weakly connected agents than strongly con-
nected agents. In the case of the weakly connected agents, nearly all of their neighbours
will be at least as well-connected, if not better-connected. This means that the typical
learning rate employed by an agent will rarely be below the population mean. As a re-
sult, the average learning rate of these agents is increased, so faster convergence is not
necessarily surprising. In order to demonstrate that the modified rule has an effect on
convergence above that which would be expected to result from a simple increase in
average learning rate, a further study was designed.

Two equal-sized groups of standard ZIP agents are initialised, the first group forming
a completely connected clique, while the second forms a minimally connected ring. The
quality of information being exchanged in the first group should, therefore, tend to be
much higher than that being trafficked in the second group. A final modified ZIP trader
with an equal number of connections to random agents within each group is added to the
market. This agent does not make any shouts, nor respond to shouts. It simply adapts its
valuation based on the information it hears. This study was run under two conditions:
using a standard ZIP algorithm for the final agent, or using the adaptive learning rule
instead. In the second condition, the connections from the final agent to the rest of the
market are ignored by the adaptive learning rate rule, as they are never used to convey
information to the market.

In the second condition, it is possible to set the number of connections from the final
agent such that its average learning rate is equal to the average learning rate of a standard
ZIP agent (0.3 in the studies reported here). The learning rates of the modified ZIP
traders lie within the range [0.1, 0.5]. The following equation for the average adaptive
learning rate, η̄(n), for a modified ZIP trader with n neighbours may be written given
that all agents within each of the two groups share the same connectivity and the final
agent has an equal number of connections to each group.
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η̄(n) =
1
2

⎛⎝0.3 + 0.2
log
(

Emax

E(n)

)
log(Rmax)

+ 0.3− 0.2
log
(

E(n)
Emin

)
log(Rmax)

⎞⎠
Where Emax is the connectivity of agents in the fully connected group and Emin

is the connectivity of agents in the weakly connected ring, and n is the number of
connections of the final agent. If we require this average to be the standard ZIP average
of 0.3 this equation can be solved to give:

n =
√

EmaxEmin

Here, we employ a fully-connected clique of fifty-one agents and a ring of fifty-one
agents, giving Emax = 50 and Emin = 2, requiring n = 10 connections in total, or
five connections to each population.

The results of 40000 repetitions are shown in figure 2(right). As can be seen, the
modified ZIP agent using an adaptive learning rate converges faster and to a signifi-
cantly lower asymptotic value than the standard ZIP agent (t-test, p < 0.0001). Hence,
the adaptive learning rate rule has a positive effect on convergence beyond simply in-
creasing the learning rate.

5 Discussion

In this paper we wished to explore the effect on convergence of market structure in
terms of trader connectivity. The result obtained in the first part of this paper clearly
show that the more connected an agent is, the faster it is able to converge, and the closer
it is able to get to the optimum price. In the short term the more well-connected traders
receive more information, and so are able to adapt faster. In the longer term, this greater
volume of information means that they have a better overall picture of the market, and
so may evaluate the optimum price more accurately.

As a consequence, the source of a shout has an impact on the quality of the in-
formation obtained. This was demonstrated by factoring information quality into the
Widrow-Hoff adaptation rule via an adaptive learning rate. Our results show that agents
who employ this strategy value the commodity more accurately in the majority of cases.

The fact that a small number of well-connected agents do worse by adopting this
adaptive learning rate rule demonstrates that it is not of universal utility. The reason for
this may be related to who these individuals are connected to. In the market structures
studied here, for the vast majority of the time, highly connected agents will receive their
information from less well-connected individuals. Since such information is judged (by
the learning rule) to be of relatively low quality, less attention is paid to it. This may be a
good decision in the long run. However, when the market opens this proves to be detri-
mental. At the beginning of a market every agent has a random valuation. Therefore,
it would pay to attend to any information, even if it originates from poorly connected
individuals. Whereas the most poorly-connected individuals do just this, the most well-
connected agents tend to trust their initial valuation to a greater extent. This results
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in the slower initial convergence seen in the most well-connected agents. One might
imagine that since these well-connected, but initially misguided individuals have a very
significant influence on their neighbours, they might retard the market’s convergence as
a whole. Results suggest that this does not occur for the topologies considered here, but
one could imagine market structures in which the hubs are so large and scarce that they
could disturb the market for some time. As it stands, the simple adaptive learning rate
rule could obviously be modified to better suit the more well-connected individuals, or,
alternatively, separate rules could be used.

The adaptive learning rate rule used in this paper is very simple. It was chosen in
order to demonstrate that the quality of an information source could be an important
factor in making trading decisions, and that this could be used by trading agents to
improve their valuations. It is not an attempt to provide an optimal rule. Their are many
other possible factors which could be incorporated in order to make this rule more
sophisticated.

As it currently stands this rule has several weaknesses. The most obvious is that it
relies on information which may not be publicly known. First, it uses the maximum con-
nectivity ratio present within the market in order to normalise the rate of change. This
is necessary in order to ensure that learning rates were scaled to fall within the same
range as that employed by standard ZIP agents. Second, whenever an agent adapts, it
uses the connectivity of the shouter in order to determine how much attention should
be paid to the shout. In real situations it seems unlikely that an agent would have access
to either of these kinds of information. In order for an agent to know the maximum
connectivity ratio, it would be necessary for the agent to know how the whole of the
market was structured. For the simulations reported here, this information is easy to
obtain. However, in real markets it seems highly unlikely that this information would
be available. The only probable way for an agent to know the whole market structure
is to be in contact with every agent in the market. If this were possible, then it is likely
that other agents would also be completely connected, and an individual agent’s con-
nectivity would cease to be an issue. The connectivity of an individual trader may be
even more difficult to obtain. In the studies reported here, every agent knows its own
connectivity and that of its neighbours. In reality it is unlikely that the agent would pos-
sess this second piece of information, or perhaps even the first. The only realistic way
to determine how well-connected another agent is, is to obtain the information from
the agent directly. As has been suggested, however, it seems unlikely that agents would
want to give this information away, as our results suggest that it is valuable.

This begs the question, if it is impossible to obtain the necessary connectivity in-
formation in reality, what practical significance do the results presented here have?
Although it may be impossible to obtain exact connectivity information, it is not im-
possible to generate an evaluation of the information quality of ones trading partners
in a real market. Moreover, information quality can be measured via indicators other
than connectivity. In the case of human markets, traders may implicitly evaluate many
aspects of their trading partners when deciding the significance of a piece of informa-
tion. These aspects may include estimates of the partner’s size (is it an investment bank
with many traders or is it an sole trader), reputation, market position, market experi-
ence, etc. As yet, it may be difficult for an artificial trader operating in a real market,
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i.e., the stock market, to do this, due to the complexity of the information processing
involved. It could be possible, however, for such automatic trading algorithms to be
provided with human-generated estimates of known trading partners. The problem be-
comes even more complex in the case of markets solely populated by artificial trading
agents. However, as mentioned above, if sufficient information is available it may be
possibly to analyse the time series of shouts by a particular agent in order to estimate
the quality of its information. There is obviously a great deal of further work to be done
in this area, particularly in examining the effect of different evaluation rules and the
effect of different market structures on market (and agent) behaviour.

This paper has been more concerned with the performance of the market as a whole
rather than the situation of any one group of traders. There are, however, many interest-
ing question which can be asked about the ways in which information may be used. In
particular it would be interesting to consider how the better connected traders could ex-
ploit their advantageous positions to make a larger profit and also how they could exploit
the knowledge that other agents gain an advantage by considering information quality.
In order to properly understand these issues, however, it may be necessary to make
the market more sophisticated. Currently, traders may only trade once. This effectively
limits the ways in which traders can exploit information because as soon as a trader
makes a trade they are effectively removed from the market. As a consequence some
areas of the market may become stagnant as all available trades are made. This could
be remedied by the introduction of a continuous flow of buy and sell orders entering the
market. Allowing traders to interact multiple times and to develop more sophisticated
strategies, whilst preventing the market from stagnating.

In this paper only a small (but significant) difference between traders using the new
strategy and those not using it is demonstrated. Two points should be noted, firstly this
rule was not chosen as an optimal rule for increasing valuation accuracy, instead it was
chosen for its simplicity in demonstrating a point. Secondly the market employed in
these experiments is by its nature “one-shot” in that all traders only trade once for one
unit of the commodity. This naturally limits the opportunities for making profits, in
particular in eliminates reselling. In real markets, however, this is not the case. Traders
in real markets often trade many times for large volumes of products. A small increase
in accuracy when dealing with large volumes may make a significant difference to the
profit obtained. In the extreme case, foreign exchange markets have a turn over in the
region of one trillion dollars a day. Even very small increases in valuation accuracy in
contexts such as these can results in huge increases in profits.

6 Conclusion

This paper has demonstrated that simple markets populated by simple trading agents
may function despite trading constraints represented by an explicit, fixed network of
possible agent-agent interactions. We have not attempted to classify or analyse the
effect of topology in general. However, for one particular type of market, some in-
teresting and encouraging results have been shown. We have demonstrated that more
well-connected agents have an informational advantage within a market. Having more
neighbours ensures that a trading agent has a better picture of the market and, as a result,
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a better valuation of the commodity being traded. By making a simple modification to
the ZIP trading algorithm to take account of this observation, improved performance
was demonstrated for all but the most well-connected individuals.

In a more general sense, these results show that if it is possible to estimate the quality
of a trader’s knowledge, it may be beneficial to factor this information into the way in
which the trading agent learns. This result isn’t necessarily restricted to trading agents.
In general, in any market with incomplete information flow, it may be beneficial to
pay more attention to the most significant players within the market. However, care is
necessary. Currently the ZIP trading strategy does not allow the more well-connected
agents to exploit their informational advantage. However, this could be changed fairly
easily. It is not difficult to imagine methods that allow simple trading agents to exploit
informational advantages in order to make profit. It is, however, difficult to imagine
ways in which to modify trading strategies in order to prevent this occurring in network
based markets. The only solution to this problem may be to design market systems
which minimise informational asymmetries. This may require research into more so-
phisticated market mechanisms to replace the continuous double auction. Alternatively,
it may require the addition of completely new processes to the market. For instance, a
process analogous to the financial press may allow agents to regularly gain an overview
of the behaviour of the entire market.
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Abstract. Mechanisms that aggregate the possibly conflicting preferences of in-
dividual agents are studied extensively in economics, operations research, and
lately computer science. Perhaps surprisingly, the classic literature assumes par-
ticipating agents to act selfishly, possibly untruthfully, if it is to their advantage,
whereas the mechanism center is usually assumed to be honest and trustworthy.
We argue that cryptography offers various concepts and building blocks to ensure
the secure, i.e., correct and private, execution of mechanisms. We propose mod-
els with and without a center that guarantee correctness and preserve the privacy
of preferences relying on diverse assumptions such as the trustworthiness of the
center or the hardness of computation. The decentralized model in which agents
jointly “emulate” a virtual mechanism center is particularly interesting for two
reasons. For one, it provides privacy without relying on a trusted third-party. Sec-
ond, it enables the provably correct execution of randomized mechanisms (which
is not the case in the centralized model). We furthermore point out how untruthful
and multi-step mechanisms can improve privacy. In particular, we show that the
fully private emulation of a preference elicitor can result in unconditional privacy
of a (non-empty) subset of preferences.

1 Introduction

Mechanisms that aggregate the possibly conflicting preferences of individual agents
are studied extensively in economics, operations research, and lately computer science.
Distributed mechanisms are used in such diverse application areas as auctions, voting,
resource sharing, routing, or task assignment.

In the heart of a mechanism lies the so-called “mechanism center” or “mechanism
infrastructure” to which agents privately send reports about their preferences and that
computes the mechanism outcome (e.g., allocation of goods, election winner, network
route, etc.). The main focus of existing work has been on creating mechanisms whose
outcome has various desirable properties (efficient computability has been added re-
cently) and in which agents have an incentive to submit their preferences truthfully.
Perhaps surprisingly, the classic literature assumes participating agents to act selfishly,
possibly untruthfully, if it is to their advantage, whereas the mechanism center is usually
assumed to be honest and trustworthy, even when it has an incentive to be untruthful,
e.g., by overstating the second-highest bid in Vickrey auctions if it gains a fraction of
the selling price (see for example [PS03]).
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In this paper, we investigate how to ensure the correctness of the mechanism out-
come and the privacy of individual preferences by using various building blocks that
have been developed in the field of cryptography over the years. As a matter of fact,
cryptography and mechanism design have major objectives in common. To a large
extent, both fields are concerned about agents who deviate from a given distributed
mechanism (respectively protocol) in an undesirable manner (violating global objec-
tives such as social welfare maximization or privacy). One could say that mechanisms
allocate utility optimally with respect to certain constraints such as individual rational-
ity, social welfare maximization, or budget-balance. For example, utility is allocated by
redistributing goods or imposing payments on participants. Cryptographic protocols,
on the other hand, allocate information optimally with respect to constraints like pri-
vacy, correctness, or fairness. However, while mechanism design assumes adversaries
to be rational (according to some definition of utility), cryptography traditionally deals
with “worst-case” adversaries, i.e., any strategy, regardless of rationality is considered.
In fact, in cryptography, it is considered a bad concept to assume rationality of the
adversary (e.g., [Gol01]). Yet, the mechanism design approach has its merits. For ex-
ample, cryptographic protocols are incapable of eliciting truthful behavior since they
cannot provide incentives. Generally speaking, proper behavior of agents in a mech-
anism is enforced by making deviations “uneconomic”, i.e., no utility can be gained
by manipulating the mechanism. In cryptography, on the other hand, the correctness
of a protocol is ensured by forcing agents to prove the correctness of each of their
actions without revealing any information but the correctness itself. This is achieved
by relying on computational intractability, i.e., the existence of computationally hard
problems, the polynomially bounded computational power of agents, etc.. Interestingly,
using computational intractability as a barrier against undesirable behavior, which has
a long tradition in cryptography since Diffie and Hellman’s seminal paper [DH76], was
recently also applied in mechanism design [BTT89, CS03c].

This paper establishes a link between cryptography and mechanism by using crypto-
graphic primitives to provide correctness and privacy in distributed mechanisms. Cor-
rectness and privacy are defined as follows. Correctness means that in the end of a
mechanism each agent is convinced that the outcome was computed correctly whereas
privacy states that an agent does not learn anything about others’ preferences that he
cannot infer from the (correct) outcome and his own preferences. Correctness and pri-
vacy are not only complementary but also deeply intertwined (see Section 3). In mecha-
nisms, privacy of preferences is crucial not only because sensible information might be
of importance for future mechanisms or negotiations but also because a lack of privacy
heavily affects the equilibria of mechanisms in execution. We will use the following
notations. Agent i’s preferences are denoted by θi ∈ Θi. The outcome function of a
mechanism is f : Θ1 ×Θ2 × · · · ×Θn → O. θ is a short notation for (θ1, θ2, . . . , θn).
n is the number of agents participating in a mechanism.

The remainder of this paper is structured as follows. Section 2 summarizes existing
work at the boundary between cryptography and mechanism design. Section 3 intro-
duces basic security models that ensure correct mechanism execution, with or without
a center. In Section 4, we consider randomized, multi-step, and untruthful mechanisms
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in the context of correctness and privacy. The paper concludes with a summary of the
obtained results and a brief outlook on future research in Section 5.

2 Related Work

In [MPS03], a connection between mechanism design and multiparty computation has
been established for a purpose that is slightly different from the one we pursue in this
paper. The authors integrate “cryptographic objectives” such as the wish to keep other
agents from learning one’s preferences, the wish to learn other agents’ preferences, the
wish to know the correct mechanism outcome, and the wish to prevent others from
knowing it into the utility functions of agents and then investigate the possibility of
incentive-compatible mechanism design in this novel framework. A similar approach
without a mechanism center was recently analyzed in [HT04]. [MT99] consider a model
where agents are not directly connected to the center, but are rather nodes in a more
general communication network.

To our knowledge, the first paper to explicitly present a security model and generic
protocol for arbitrary mechanisms was [NPS99]. This model basically consists of two
centers that are assumed not to collude. The decentralized model presented in Sec-
tion 3.2 is based on preliminary results lately proposed in [Bra03b]. The importance of
considering the privacy of agents in distributed mechanisms has been stated in
[FNR+02, FS02].

In recent years, there has been a large body of research on cryptographic auction pro-
tocols, i.e., protocols that privately compute the outcome of sealed-bid auction mecha-
nisms (e.g., [Bra03a, Kik01, NPS99]). These special-purpose protocols implicitly con-
tain security models (of which almost all are based on using more than one center).

3 Security Models

In this section, we investigate which sets of assumptions (general model, communi-
cation channels, existence of one-way functions, etc.) allow the provably correct ex-
ecution of deterministic single-step mechanisms. In particular, we examine whether
unconditional privacy, i.e., privacy that can never be breached, even when unbounded
computational power becomes available, can be achieved in a given model.

In order to enable the notion of unconditional privacy in the first place, we have
to make the following distinction. While we (in some models) allow unbounded com-
putational power to breach privacy after the protocol/mechanism terminated, super-
polynomial computational power is not available during the protocol. The deep rela-
tion between correctness and privacy makes this assumption necessary.1 Nevertheless,
this assumption seems reasonable since the time needed to perform super-polynomial
computation is presumably longer than the typically short execution time of a mecha-
nism. Furthermore, we generally assume the availability of a public key infrastructure.
In some cases, we will assume “private channels” between certain parties. These are

1 Otherwise, privacy could be breached by violating correctness (e.g., by forging perfect zero-
knowledge arguments).
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authenticated means of communication between two parties that are unconditionally
secure without relying on any computational assumption. Quantum channels, for ex-
ample, would meet this definition.

It has turned out that the existence of almost all cryptographic primitives can be re-
duced to the existence of certain notions of one-way functions. A one-way function
is a function that can be evaluated efficiently (in polynomial time), but there is no
polynomial-time algorithm that can invert the function more accurately than guessing
at random. A one-way permutation is a one-way function that is a bijective mapping
of a domain onto itself. A trapdoor permutation is a one-way permutation that, given
some extra information (the trapdoor), can be inverted in polynomial time. To give two
examples, it has been shown that secure digital signatures exist if (and only if) there
are one-way functions. Secure public-key encryption, on the other hand, is known to be
feasible if trapdoor permutations exist.

The actual existence of one-way functions would imply P �=NP. However, the
reverse is not true: Although it might be hard to invert a function in the worst-case, it
can be easy in many practical instances or even in the average-case. This uncertainty
plus the technological assumptions one has to rely on—even when one-way functions
exist—motivate the exploration of security that is based on alternative models such as
in unconditionally secure multiparty computation [BGW88, CCD88].

The approach of the subsequent sections is as follows. We believe correctness to be
fundamentally important and thus only consider models that guarantee correctness. On
top of that, we investigate which sets of assumptions are necessary to provide differing
degrees of privacy, e.g., privacy that relies on a trusted center or privacy that relies
on computational intractability. The proofs in the following sections will make use of
cryptographic primitives such as commitment schemes, (computational) zero-knowledge
proofs, and perfect zero-knowledge arguments2. We refer to cryptographic textbooks
(e.g., [Gol01]) for definitions of these building blocks.

3.1 Centralized Mechanism Execution

Let us first start by trying to obtain a provably correct single center without caring for
privacy. It might seem to be sufficient to provide private channels, e.g., based on public-
key cryptography, from each agent to the center in order to transmit the preferences and
a signature scheme that allows agents to sign their submissions. The center would then
be able to prove the correctness of the outcome by just broadcasting all signed prefer-
ences. However, the center could collude with an agent and make him sign and send
preferences that the center chooses after having seen preferences that were submitted
earlier.3 For this reason, publishing a so-called commitment to one’s preferences prior
to submitting the preferences becomes inevitable. By applying zero-knowledge proofs

2 Perfect zero-knowledge arguments are a variant of zero-knowledge proofs in which there is no
information revelation even to computationally unbounded adversaries, but computationally
unbounded agents can produce “forged” proofs.

3 Even if communication from the center to any agent could be prohibited, a manipulated agent
would be able to send various signed messages. The center could then choose the appropriate
one after it has seen all other preferences.
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to the commitment values, we essentially get computational privacy for free, i.e., with-
out having to make further assumptions.

Theorem 1. Correct deterministic mechanism execution can be guaranteed given that
trapdoor permutations exist. Privacy can be breached by the center or exhaustive com-
putation.

Proof. Agents broadcast unconditionally binding commitments to preferences. Both
the commitment scheme and the broadcasting can be based on the existence of one-way
functions (and the availability of a signature scheme infrastructure) [LSP82, Nao89]. In
order to prevent an agent from copying somebody else’s commitment (and thus his pref-
erences), each agent proves in computational zero-knowledge (which can be based on
one-way functions as well [BOGG+88]) that he knows how to open the commitment,
i.e., he proves that he knows what he committed to. These proofs are executed sequen-
tially to avoid the copying of proofs.4 After all agents have submitted their commit-
ments (this can be publicly verified due to the broadcasting), agents send information
on how to open their commitments to the center using public-key encryption (based
on trapdoor permutations). The center privately opens all preferences and rejects mal-
formed by publicly opening the commitment value (on the broadcast channel). The
center cannot reject preferences illegitimately as the commitment value is uniquely de-
fined. Finally, it privately computes and declares the outcome with an accompanying
proof of correctness in computational zero-knowledge. ��

In order to obtain privacy that does not rely on intractability, we also consider a model
that is based on somewhat stronger assumptions.

Theorem 2. Correct deterministic mechanism execution can be guaranteed given that
there are private channels from each agent to the center and one-way permutations
exist. Privacy can only be breached by the center.

Proof. Agents broadcast unconditionally hiding commitments to their preferences and
sequentially prove their correctness using perfect zero-knowledge arguments. After
that, agents send information on how to open their commitments to the center on pri-
vate channels. The center then privately opens the preferences and rejects malformed
by publicly opening the corresponding commitment. In the following, it privately com-
putes the outcome and then declares the outcome with an accompanying argument of
correctness in perfect zero-knowledge. All these operations can be based on one-way
permutations. ��

Zero-knowledge proofs and arguments allow the center to privately send parts of the
outcome to each agent (and prove its correctness), so that a single agent learns only the
part of the outcome that it is required to know. This can be of advantage in auctions so
that only winning bidders learn about the goods they are awarded and the prices they
have to pay while still guaranteeing correctness [Bra03a].

4 There are more efficient, yet less intuitive, ways of achieving the same functionality.
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3.2 Decentralized Mechanism Execution

In order to decentralize the trust that agents need to have in a single center, the computation
of the outcome can be distributed across several distinct centers. This is just a straight-
forward application of secure multiparty computation [GMW87, BGW88, CCD88]. It
is possible to generate shares of a secret piece of information so that a single share is
“worthless”, i.e., it reveals no information at all, but all shares put together uniquely de-
termine the original piece of information.5 Assume that agents distribute shares of their
preferences so that each center receives one share from each agent. Multiparty computa-
tion protocols allow the centers to jointly compute the mechanism outcome using these
shares. Depending on the protocol and the underlying security model, privacy may rely
on computational intractability. In any case, privacy also relies on the assumption that a
coalition of all centers is ruled out. When all centers collude and share their information,
they can reconstruct each agent’s private preferences. Nevertheless, this model is used in
almost all existing cryptographic auction protocols. Especially the special case for two
centers, as introduced by [Yao82], has been widely used.

In this section, we aim to obtain a more satisfying level of privacy by omitting the
center(s) completely and letting agents resolve the mechanism by themselves. In other
words, the mechanism’s participants engage in a multiparty computation protocol. The
key observation underlying this model is that if there is a coalition of all agents, there
are no preferences left to be private. Thus, if the protocol is designed so that a coalition
of up to n − 1 agents does not gain any information, collusion becomes pointless (in
order to breach privacy). This will be called “full privacy” in the following.

Definition 1 (Full privacy). A protocol is fully private6 if no information about any
agent’s preferences can be uncovered, other than what can be inferred from the outcome
and all remaining preferences.

By introducing full privacy, we shift the focus from mechanisms to protocols. These
protocols enable agents to jointly determine the outcome of the mechanism by exchang-
ing messages according to some predefined rules without revealing any information be-
sides the outcome. We say that a protocol fully privately emulates a mechanism. When
relying on computational intractability, any mechanism can be emulated by fully private
protocols.

Proposition 1. Correct mechanism execution can be guaranteed without a center given
that trapdoor permutations exist. Privacy can only be breached by exhaustive compu-
tation.7

5 As an easy example, consider a single secret bit that is shared by choosing n bits at random so
that the exclusive-or of these n bits yields the original bit. A single share, and even up to n − 1
shares, reveal no information at all about the secret bit.

6 In cryptographic terms, a fully private protocol is (n−1)-private, which means that a coalition
of up to n − 1 agents is incapable of breaching privacy.

7 Propositions 1 and 2 are based on modifying the classic results of multiparty computation
[GMW87, BGW88, CCD88] for a setting of full privacy by introducing “weak robustness”.
Due to a very strict security model, the original results rely on a fraction, e.g., a majority, of
the agents being trusted (see [Bra03b] for more details).
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It turns out that replacing intractability assumptions with the existence of uncondition-
ally private channels (like in Section 3.1), only enables the fully private emulation of a
restricted set of mechanisms. These mechanisms will be called “simple mechanisms”
in the following.

Definition 2 (Simple Mechanism). A mechanism is simple if its outcome function is
privately computable in the sense of [Kus89, CK89]. E.g., the only Boolean outcome
functions that are privately computable are of the form f(θ) = B1(θ1) ⊕ B2(θ2) ⊕
· · · ⊕ Bn(θn) where Bi(θi) are Boolean predicates and ⊕ is the Boolean exclusive-or
operator.

There is yet no complete characterization of privately computable functions (except for
special cases like Boolean [CK89] and 2-ary functions [Kus89]). However, by using
known necessary conditions for private computability, it has been shown that first-price
sealed-bid auctions are simple mechanisms whereas second-price sealed-bid auctions
are not [BS04].

Proposition 2. Correct mechanism execution can be guaranteed for simple mecha-
nisms without a center given that there are private channels between all agents and
one-way permutations exist. Privacy cannot be breached.7

As in the previous section, both models also allow the (correct) computation of different
outcomes (or parts of an outcome) for each agent, e.g., so that losing bidders in an
auction do not learn the selling price.

4 Intertwining Cryptography and Mechanism Design

In this section, we will relax three restrictions that we made so far, namely that mech-
anisms are deterministic, single-step, and incentive-compatible. The revelation prin-
ciple, a central theorem of mechanism design, suggests that one restrict attention to
direct-revelation mechanisms, i.e., truthful, single-step mechanisms, as all remaining
mechanisms can be simulated by (possibly randomized) direct-revelation mechanisms.
Although this a striking result in mechanism design, its consequences are debatable as
it does not consider the following important aspects: communication complexity, com-
putational abilities of the agents and the center (see also [CS03b]), and, which is our
main concern here, privacy of agents’ preferences. But first of all, let us consider the
effects of randomization on the correctness of a mechanism.

4.1 Randomized Mechanisms

Randomized mechanisms, i.e., mechanisms in which the outcome function is proba-
bilistic, are of increasing interest. It has been shown in [CS02a] that the automated
design of an optimal deterministic mechanism for a constant number of agents is NP-
complete in most settings whereas the design of randomized mechanisms for the same
purpose is always tractable (by linear programming). Furthermore, randomized mech-
anisms are always as good or better than deterministic ones in terms of the expected
value of the designer’s objective (e.g., a 2-item revenue maximizing auction has to be
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randomized [AH00, CS03a]). Finally, as mentioned above, the revelation principle only
holds if we allow for the possibility that the resulting direct-revelation mechanism may
be randomized.

Randomization has severe consequences on the notion of correctness. Whereas a
single mechanism center can prove the correctness of the outcome of a deterministic
mechanism (see Section 3.1), this is not possible for randomized mechanisms. There
is no way a mechanism center can actually prove that it is using real random numbers
in order to compute the outcome (without introducing a third-party that is assumed to
reliably supply random data). The advantages of randomized mechanisms (e.g., that
manipulating the mechanism can be NP-hard [CS03c]) in fact rely on the trustworthi-
ness of the mechanism center. These advantages become void if the center is corrupt.
Forcing the center to commit to its random choice before the agents submit their pref-
erences only reduces the problem as the center might still choose a random value that
is beneficial to itself (and possibly colluding agents).8

In the decentralized model proposed in Section 3.2, on the other hand, the “compe-
tition” between agents allows the unbiased joint generation of random numbers (unless
all agents collude).

Theorem 3. Randomized mechanisms can be emulated correctly by computationally
fully private protocols. Randomized simple mechanisms can be emulated correctly by
unconditionally fully private protocols.

Proof. The following construction builds on a cryptographic primitive that is called
“coin tossing into the well” [Blu82]. Before computing the mechanism outcome, each
agent broadcasts an unconditionally hiding commitment to a freely chosen bit-string ri

and proves the correctness of the commitment (i.e., that he knows what is inside) with
a perfect zero-knowledge argument. These proofs are arranged sequentially to avoid
proof duplication as in Theorem 1. After that, agents commit to their preferences and
start emulating the mechanism. In the following computation of the outcome, agents
can use r = r1 ⊕ r2 ⊕ · · · ⊕ rn (which can be privately computed, even in the un-
conditionally private model according to Definition 2) as a source of pure random data.
We stress the fact, that this procedure works for the computationally private emula-
tion of arbitrary mechanisms as well as the unconditionally private emulation of simple
mechanisms. As the agents generate the random bit-string before committing to their
preferences, the correctness of the (randomized) outcome can still be guaranteed if all
agents collude after knowing the submitted preferences of each other for sure (in the
form of commitments). This is desirable as there are mechanisms in which it might
be beneficial for all agents to manipulate the randomization of the outcome after they
know their submissions.9 ��

8 Even though truthfulness is preserved when the random choice is known beforehand in
strongly truthful mechanisms [MV04], other properties such as revenue maximization might
be lost when agents are able to manipulate the random choice by colluding with the mechanism
center.

9 There might also be randomized mechanisms where the opposite is true, i.e., all agents benefit
from a manipulation of their preferences after they know the common random string, but we
doubt that they are of any significance.
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4.2 Multi-Step Mechanisms

Multi-step mechanisms are mechanisms in which the center gradually asks questions to
the agents in multiple rounds until enough preferences have been elicited to compute
the outcome (see e.g., [CS01]). Ascending (e.g., English) or descending (e.g., Dutch)
auctions are special cases of this definition. Besides the limited preference revelation,
multi-step mechanisms have an important advantage that is not considered in cryp-
tography: Agents do not need to completely determine their own preferences. This is
important because determining one’s own preferences may be tedious task and can even
be intractable [San93].

While executing multi-step mechanisms in the single center models presented in
Section 3.1 is straightforward, it is interesting to examine whether the fully private em-
ulation of multi-step mechanisms is possible. By fully privately emulating a multi-step
mechanism, we can improve the level of privacy guaranteed in Proposition 1 because
some preferences might never be elicited and thus remain unconditionally private. How-
ever, the main problem is that queries may implicitly contain information on agents’
preferences revealed so far. We define a certain class of mechanisms which always ben-
efit from private elicitation.

Definition 3 (Privately Elicitable Mechanism). A mechanism is called privately elic-
itable if it satisfies the following two conditions:

– There are cases in which a subset of the preferences is sufficient to compute the
mechanism outcome.10

– There is a function that maps the mechanism outcome and the preferences of one
agent to the complete sequence of queries that this agent received.

The second condition ensures that agents do not learn information about others’ prefer-
ences from the queries they are asked (see the proof of Theorem 4 for details). English
auctions, for example, are privately elicitable mechanisms: The first condition holds be-
cause it is irrelevant (for the mechanism outcome) how much the highest bidder would
have bid, as long as it is made sure that everybody else bid less than him. The second
condition is satisfied because the only prices not “offered” to a bidder are prices above
the selling price.

Theorem 4. Privately elicitable mechanisms can be emulated by fully private protocols
so that it is impossible to reveal all preferences, even by exhaustive computation.

Proof. Without loss of generality, the preference elicitor can be emulated by the follow-
ing protocol. We jointly and iteratively compute a query function and a stop-function
for several rounds, and once, at the end of the protocol, evaluate the outcome function.
Let γi ∈ Γi be the (iteratively updated) set of agent i’s statements on his prefer-
ences, γ = (γ1, γ2, . . . , γn), and Γ = Γ1 × Γ2 × · · · × Γn. All γi are initialized
as empty sets. The following procedure is repeated round by round. The query func-
tion q : {1, 2, . . . , n} × Γ → Q, which is fully privately computed by all agents (using

10 Otherwise, preference elicitation would be pointless, regardless of privacy. Almost all practical
mechanisms satisfy this condition.
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Proposition 1), outputs a private query for each agent (Q is some set of available queries
including an empty query ⊥). Agents reply to these queries by publicly committing to
their answer on a broadcast channel (without revealing their answer). Thus, γi is defined
as the set of commitments agent i made so far. Whenever no more information is needed
from a particular agent i, q(i, γi) = ⊥. Agents reply to that by committing to an “empty
answer”. Agents then jointly compute the Boolean stop function s : Γ → {0, 1} and
proceed to the next round (by asking more queries) if it is 0, or compute the outcome
function f ′ : Γ → O if s(γ) = 1.

So far, all agents get to know the number of rounds, i.e., the maximal number of
queries asked to a single agent, and could infer information from that. Sometimes this
information can be inferred from the outcome (e.g., in an English or Dutch auction).
However, as this is not the general case, the number of rounds needs to be hidden. For
this reason, we execute the protocol for the maximal number of rounds that could be
needed to compute the outcome and use the modified query function

q′(i, γ) =

{
q(i, γ) if s(i, γ) = 0
⊥ otherwise

.

The only information an agent learns is the sequence of queries he is asked. According to
Definition 3, the agent can infer this information from the mechanism outcome anyway,
thus giving him no information advantage than to just being informed of the outcome.
What remains to be shown is that there always is a protocol that hides some part of the
preferences unconditionally. If we define the query function to ask completely at random
for information that has not been revealed by that agent so far (satisfying the second
condition of Definition 3), some preferences always remain unelicited (in expectation).

There certainly exist particular mechanisms that allow for more efficient elicitation
protocols than this general proof construction. Also, in some specific mechanisms,
queries may depend on others’ preferences if the information revealed through the
queries can be inferred from the outcome. ��
Together with Proposition 1 and Proposition 2 this result gives a nice classification of
private mechanisms: All mechanisms can be emulated guaranteeing computational pri-
vacy, privately elicitable mechanisms can additionally provide unconditionally privacy
of a (non-empty) subset of preferences, and simple mechanisms provide unconditional
privacy of all preferences. A striking advantage of private elicitation over the approach
given in Proposition 2 is that it enables unconditional privacy of some preferences with-
out assuming private channels.

It is important to note that elicitation can invalidate strategy equilibria existing in the
single-step version of a mechanism if the queries asked to an agent depend on other
agents’ preceding answers [CS02b]. When preference elicitation is used to implement
a mechanism that would be a dominant-strategy direct-revelation mechanism if imple-
mented as a single-step mechanism, then each agent’s best (even in hindsight) strategy is
to act truthfully if the other agents act truthfully [CS01]. In other words, truthful strate-
gies form an ex post equilibrium. Ex post equilibria are not as robust as dominant-strategy
equilibria, but are more robust than Bayesian Nash equilibria in that they are prior-free.

The emulation of multi-step mechanisms is a powerful tool to guarantee strong pri-
vacy (partially unconditional) and reduce the amount of agents’ deliberation required to
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evaluate their preferences. For example, consider a veto voting mechanism: Preferences
are single bits (veto or not) and the outcome function is defined as f(θ) =

∨n
i=1 θi. This

mechanism is not simple according to Definition 2. As a consequence, there is no un-
conditionally fully private veto protocol. However, we can construct a protocol in which
most preferences remain unconditionally private by emulating a preference elicitor. The
protocol consists of n rounds. In each round, a randomly selected agent that has not been
queried so far is privately asked for his preference (veto or not). All other agents receive
empty queries and reply with empty queries. Once an agent privately submits a veto, all
agents receive empty queries in the following rounds. Since the query function is com-
puted fully privately, only some agents (those who are queried) learn some probabilistic
information on the number of vetoers.

4.3 Untruthful Mechanisms

Untruthful mechanisms may not only lead to greater social welfare in some settings (re-
lying on computational assumptions) [CS03b], but they can also support the protection
of preferences. As a matter of fact, the probably most prominent truthful mechanism,
the Vickrey auction, is said to be rare because bidders are reluctant to reveal their pref-
erences truthfully as required by the dominant strategy [RTK90]. This problem and the
possibility of an untruthful mechanism center (which is stated as the other major rea-
son for the Vickrey auction’s rareness) can be tackled by the techniques presented in
Section 3.2. Yet, even in the centralized model, preferences can be protected (at least
partially) by inducing strategic behavior in a mechanism. We sketch two different ways
how to achieve this, of which the second one relies on computational intractability.

When the mapping from preferences to a strategy is a non-injective function, i.e.,
different preferences can yield the same strategy, it is obviously impossible to uniquely
invert a strategy. This naturally is the case when the set of strategies Si is smaller than
the set of preferences (|Θi| > |Si|). For instance, in most voting protocols with more
than two candidates, a complete ranking of candidates (the preferences) is mapped to
a single strategic vote (the strategy). For example, when considering the US presiden-
tial election in 2000 (plurality voting with three candidates), it is impossible to tell if
someone who voted for Gore, truthfully preferred Gore over Nader or not (even given
the prior beliefs of that voter, e.g., that Nader would be far behind). The same argument
applies to most other voting protocols.

Based on these considerations, it might be interesting to construct mechanisms that
induce equilibria consisting of “one-way strategies”. Here, the mapping from prefer-
ences to a strategy is computationally easy while the inversion is intractable (preferably
even given the beliefs that the agent had). This requires that |Θi| is exponentially large
or somehow enriched, possibly by random data padding. We do not know whether such
mechanisms can be constructed (for relevant problems), but note that this might be
another interesting application of computational intractability in mechanism design.

5 Conclusion and Future Work

In this paper, we suggested that the fields of cryptography and mechanism design have
several similarities and can both greatly benefit from each other. We proposed two se-
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curity models for centralized mechanism execution in which the center proves its cor-
rectness (in zero-knowledge) and that provide differing degrees of privacy. However,
in these models, privacy always has to rely on the trustworthiness of the mechanism
center. For this reason, we showed how participating agents can emulate a (correct)
“virtual” mechanism center by jointly computing the mechanism outcome without a
trusted third-party. The emulation of a restricted class of mechanisms, so-called simple
mechanisms, can provide unconditional privacy of preferences whereas all mechanisms
can be emulated so that privacy can only be breached by unbounded computation. In
these models, privacy builds upon the fact that it can be ruled out that all agents are
forming a coalition in order to breach privacy. Furthermore, the decentralization allows
for the provable correctness of randomized mechanisms. Table 1 summarizes the pro-
posed models for secure mechanism execution. Even though the centralized models
provide questionable privacy, there are certainly applications in which they would be
favored over the decentralized models due to practical considerations (efficiency, lack
of communication between agents, robustness, etc.).

Table 1. Comparison of security models with provable correctness

Center Privacy can be breached by Requirements

Th. 1 yes center or computation trapdoor perm., det. mech.

Th. 2 yes center A → C-channels, one-way perm., det. mech.

Pr. 1 no computation trapdoor perm.

Pr. 2 no — A → A-channels, one-way perm., simple mech.

A → C-channels: private channels from each agent to the center
A → A-channels: complete network of private channels between all agents

In addition to the revelation principle criticisms stated in [CS03b], we pointed out
that multi-step and untruthful mechanisms can drastically improve privacy in a variety
of social choice settings. In particular, we identified a class of mechanisms, so-called
privately elicitable mechanisms, for which there are fully private protocols that emulate
a preference elicitor so that a part of the preferences is never elicited and thus remains
unconditionally private and does not have to be determined by the agents.

Besides further investigation of preference protection by multi-step and untruthful
mechanisms, future directions include

– the construction of efficient zero-knowledge proofs/arguments for the outcome of
relevant mechanisms,

– the investigation of which mechanisms can be emulated by unconditionally fully
private protocols (a first step has been made in [BS04]), and

– the construction of efficient protocols that (computationally) fully privately emulate
relevant mechanisms.11

11 We already constructed a protocol that (computationally) fully privately emulates the Vickrey
auction in just three rounds of broadcasting without any direct interaction between bidders
[Bra03a].
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